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A vertex with degree one and a vertex with degree at least three are called a leaf and 

a branch vertex in a tree, respectively. In this paper, we obtain that every 2-connected 

K 1 ,r -free graph G contains a spanning tree with at most k leaves if α(G ) ≤ k + � k +1 
r−3 

� −
� 1 

| r−k −3 | +1 
� , where k ≥ 2 and r ≥ 4 . The upper bound is best possible. Furthermore, we 

prove that if a connected K 1 , 4 -free graph G satisfies that α(G ) ≤ 2 k + 5 , then G contains 

either a spanning tree with at most k branch vertices or a block B with α(B ) ≤ 2 . A re- 

lated conjecture for 2-connected claw-free graphs is also posed. 

© 2023 Elsevier Inc. All rights reserved. 

 

 

 

1. Introduction 

In this paper, we only consider simple and undirected graphs. Let G be a graph and v ∈ V (G ) . We denote the degree of v
by deg G (v ) and the vertices which are adjacent to v by N G (v ) . For a set S ⊆ V (G ) , the subgraph induced by S and V (G ) \ S
are denoted by G [ S] and G − S, respectively. We denote the number of vertices in S by | S| . 

A subset X is independent in G if G [ X] has no edge. The independence number of G is denoted by α(G ) , which means 

the maximum number of vertices in an independent set of G . Define σk (G ) = min { ∑ 

x ∈ X 
deg G (x ) | X is independent in G and

| X| = k }. G is called K 1 ,r -free if K 1 ,r is not an induced subgraph of G . We write claw-free graph for the K 1 , 3 -free graph. The

center of a claw refers to the vertex of degree 3 in K 1 , 3 and x -claw refers to a claw with center x . 
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We call v a leaf of tree T if deg T (v ) = 1 and denote L (T ) the set of leaves of T . A vertex v with deg T (v ) ≥ 3 is called a

branch vertex of tree T and define B (T ) the set of branch vertices of T . 

There are some well-known results such as Ore’s Theorem [8] and Chvátal–Erd ̋os’s Theorem [4] related to conditions of

degree sum and independence number ensuring a Hamiltonian path in G , respectively. Note that a Hamiltonian path is a

spanning tree with two leaves. With this viewpoint, researchers gave several results concerning about such two types of 

conditions to guarantee the existence of spanning tree with bounded leaves(see the survey paper [9] ). 

The following two results generalize Ore’s Theorem [8] and Chvátal–Erd ̋os’s Theorem [4] , respectively. 

Theorem 1.1 (Broerma and Tuinstra [1] ) . Let k ≥ 2 . If G is a connected graph of order n such that σ2 (G ) ≥ n − k + 1 , then G

has a spanning tree with at most k leaves. 

Theorem 1.2 (Win [10] ) . Let k ≥ 2 . If G is an m -connected graph such that α(G ) ≤ m + k − 1 , then G has a spanning tree with

at most k leaves. 

Since there are many researches on Hamiltonian path problem in K 1 ,r -free graphs, it is also natural for us to search for

conditions for K 1 ,r -free graphs to ensure the existence of spanning trees with bounded leaves. Here are some related results

on K 1 ,r -free graphs. 

Theorem 1.3 (Kano et al. [6] ) . Let k ≥ 2 . If G is a connected claw-free graph of order n such that σk +1 (G ) ≥ n − k , then G has a

spanning tree with at most k leaves. 

Theorem 1.4 (Kyaw [7] ) . Let G be a connected K 1 , 4 -free graph of order n . 

(i) If σ3 (G ) ≥ n , then G has a Hamiltonian path. 

(ii) If σk +1 (G ) ≥ n − k 
2 for some integer k ≥ 3 , then G has a spanning tree with at most k leaves. 

Theorem 1.5 (Chen et al. [2] ) . Let m ≥ 2 . If G is an m -connected K 1 , 4 -free graph of order n such that σm +3 (G ) ≥ n + 2 m − 2 ,

then G has a spanning tree with at most 3 leaves. 

Theorem 1.6 (Chen et al. [3] ) . If G is a connected K 1 , 5 -free graph of order n such that σ5 (G ) ≥ n − 1 , then G has a spanning

tree with at most 4 leaves. 

Theorem 1.7 (Hu and Sun [5] ) . If G is a connected K 1 , 5 -free graph of order n such that σ6 (G ) ≥ n − 1 , then G has a spanning

tree with at most 5 leaves. 

In this paper, we consider α(G ) for a 2-connected K 1 ,r -free graph with r ≥ 4 to guarantee the existence of a spanning

tree with bounded leaves. 

Theorem 1.8. Let k ≥ 2 and r ≥ 4 . If G is a 2-connected K 1 ,r -free graph such that α(G ) ≤ k + � k +1 
r−3 � − � 1 

| r−k −3 | +1 
� , then G has a

spanning tree with at most k leaves. 

By taking r = 4 in Theorem 1.8 , we have the following corollary. 

Corollary 1.9. Let k ≥ 2 . If G is a 2-connected K 1 , 4 -free graph such that α(G ) ≤ 2 k + 1 , then G has a spanning tree with at most

k leaves. 

Note that a tree with at most k leaves contains at most k − 2 branch vertices. We can easily obtain the following corollary.

Corollary 1.10. Let k ≥ 0 . If G is a 2-connected K 1 , 4 -free graph such that α(G ) ≤ 2 k + 5 , then G has a spanning tree with at most

k branch vertices. 

With the same independence number condition of Corollary 1.10 , we further provide the following result for connected 

K 1 , 4 -free graphs. 

Theorem 1.11. Let k ≥ 0 . If G is a connected K 1 , 4 -free graph such that α(G ) ≤ 2 k + 5 , then one of the following two statements

holds: 

(i) G has a spanning tree with at most k branch vertices; 

(ii) there exists a block B in G with α(B ) ≤ 2 . 

We provide the following conjecture for connected claw-free graphs to end this section. 

Conjecture 1.12. Let k ≥ 2 . If G is a 2-connected claw-free graph such that α(G ) ≤ 2 k + 2 , then G has a spanning tree with at

most k leaves. 

In next section, we show that the upper bounds of α(G ) are sharp in Theorem 1.8 and Conjecture 1.12 if it is true. We

prove Theorem 1.8 and Theorem 1.11 in Sections 3 and 4 , respectively. 
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Fig. 1. Graph G 1 . 

Fig. 2. Graph G 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Sharpness of Theorem 1.8 and Conjecture 1.12 

First, we show that the upper bound of α(G ) in Theorem 1.8 is sharp. This is shown in the following examples G 1 and

G 2 . 

Denote t = � k +1 
r−3 � and h = k + 1 − t(r − 3) . 

Case 1. r � = k + 3 . 

In this case, � 1 
| r−k −3 | +1 

� = 0 . 

If h � = 0 , we construct a graph G 1 from a complete graph K 2 t+2 with V (K 2 t+2 ) = { x 0 , x ′ 0 , x 1 , x ′ 1 , . . . , x t , x ′ t } and (r − 2) t +
h + 1 complete graphs K m 

(m ≥ 3 ) by identifying r − 2 complete graphs K m 

with every pair of { x i , x ′ i } for 1 ≤ i ≤ t and by

identifying h + 1 complete graphs K m 

with { x 0 , x ′ 0 } (see Fig. 1 ). Then G 1 is 2-connected K 1 ,r -free and α(G 1 ) = t(r − 2) +
h + 1 = t(r − 2) + k + 1 − t(r − 3) + 1 = k + 1 + t + 1 = k + 1 + � k +1 

r−3 � . However, for every spanning tree T 1 of G 1 , we have

| L (T 1 ) | ≥ t(r − 3) + h = k + 1 . Case 2. r = k + 3 . 

In this case, � k +1 
r−3 � = 2 and � 1 

| r−k −3 | +1 
� = 1 . 

We construct a graph G 2 from a pair of vertex set { x 0 , x ′ 0 } and r − 1 complete graphs K m 

( m ≥ 3 ) by identifying r − 1

complete graphs K m 

with { x 0 , x ′ 0 } . Then G 2 is 2-connected K 1 ,r -free and α(G 2 ) = r − 1 = k + 2 , but G 2 has no spanning tree

with at most k leaves. 

Next, we show that the upper bound 2 k + 2 in Conjecture 1.12 is sharp if it is true. For 0 ≤ i ≤ k , let T i and T ′ 
i 

be

two triangles with V (T i ) = { x i , y i , z i } and V (T ′ 
i 
) = { x ′ 

i 
, y ′ 

i 
, z ′ 

i 
} , respectively. Consider a graph G 3 constructed from a complete

graph K 2 k +2 with V (K 2 k +2 ) = { x 0 , x ′ 0 , x 1 , x ′ 1 , . . . , x k , x ′ k } and 2 k + 2 complete graphs K m 

( m ≥ 3 ) by identifying 2 k + 2 complete

graphs K m 

with every pair of { y i , y ′ i } and { z i , z ′ i } for 0 ≤ i ≤ k , respectively (see Fig. 2 ). Then G 3 is 2-connected claw-free with

α(G 3 ) = 2 k + 3 , but G 3 has no spanning tree with at most k leaves. 

3. Proof of Theorem 1.8 

We begin with some additional notations. Let x and y be two vertices of G , we denote the distance between x and

y in G by d G (x, y ) . Let u and v be two vertices in a spanning tree T of G , the unique path from u to v in T is denoted by

T [ u, v ] . We write T [ u, v ] − { u, v } , T [ u, v ] − { u } , T [ u, v ] − { v } by T (u, v ) , T (u, v ] and T [ u, v ) , respectively. Set I(T ) = V (T ) − L (T )

and f (T ) = max 
v ∈ L (T ) 

f (T , v ) , where f (T , v ) = 

∑ 

z∈ I(T ) 

(deg T (z) − 2) d T (v , z) . Note that (deg T (z) − 2) d T (v , z) = 0 if deg T (z) = 2 . Set

g(T ) = 

∑ 

x ∈ L (T ) 

g(T , x ) , where g(T , x ) = max { d T (x, y ) | y ∈ N G (x ) } . 

Proof of Theorem 1.8.. Suppose that G is a 2-connected K 1 ,r -free graph and every spanning tree has at least k + 1 leaves in

G . We choose a spanning tree T of G satisfying that 

( C1 ) | L (T ) | is as small as possible; 

( C2 ) Subject to ( C1 ), f (T ) is as large as possible; 

( C3 ) Subject to ( C1 ) and ( C2 ), g(T ) is as large as possible. 

Assume that L (T ) = { x 0 , x 1 , . . . , x t } and f (T ) = f (T , x 0 ) . Then t ≥ k . T is considered as a rooted tree and x 0 is the root of T .

For 1 ≤ i ≤ t , r i is the last branch vertex of T on T [ x 0 , x i ] and r + 
i 

is the successor of r i on T [ x 0 , x i ] . For v ∈ V (T ) − { x 0 } , the

predecessor of v is denoted by v − on T [ x , v ] . �
0 

3 
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Claim 3.1. L (T ) is independent in G . 

Proof. Assume that x i x j ∈ E(G ) for some i and j with 0 ≤ i � = j ≤ t . Then T ∗ = T − { r i r + i 
} + { x i x j } is a spanning tree with

L (T ∗) = (L (T ) − { x i , x j } ) ∪ { r + 
i 
} , contradicting ( C1 ). This proves Claim 3.1 . �

Remark 3.1. From the proof of Claim 3.1 , we know that for every spanning tree T ∗ of G with | L (T ∗) | ≤ | L (T ) | , then L (T ∗) is
independent in G with | L (T ∗) | = | L (T ) | . 
Claim 3.2. For 1 ≤ i ≤ t, there is no neighbour of x 0 on T (r i , x i ) . 

Proof. Assume that y ∈ N G (x 0 ) with y ∈ V (T (r i , x i )) for some 1 ≤ i ≤ t . Then T ∗ = T − { yy −} + { x 0 y } is a spanning tree of G .

If y − = r i , then | L (T ∗) | < | L (T ) | , contrary to ( C1 ); if y − � = r i , then T ∗ satisfies ( C1 ). Note that B (T ∗) = B (T ) . Then d T ∗ (z, x i ) =
d T ∗ (x 0 , x i ) + d T (z, x 0 ) for any z ∈ B (T ) . Since d T ∗ (x 0 , x i ) > 1 , we have d T ∗ (z, x i ) > d T (z, x 0 ) . Thus f (T ∗, x i ) > f (T , x 0 ) . Then we

have f (T ∗) > f (T ) , contrary to ( C2 ). �

For 1 ≤ i 1 < . . . < i l ≤ t , denote by r i 1 ... i l the last common vertex of the paths T [ x 0 , x i 1 ] , . . . , T [ x 0 , x i l ] . We denote the suc-

cessor of r i j on T [ r i j , x i ] and T [ r i j , x j ] by r + 
i j 

and r + 
ji 

, respectively. Denote the predecessor of r i j on T [ x 0 , r i j ] by r −
i j 

. The prede-

cessor of y on T (r i j , x j ) is denoted by y −. 

Claim 3.3. N G (x i ) ⊆ V (T (x 0 , x i )) for 1 ≤ i ≤ t. 

Proof. Assume that there exists x j ∈ L (T ) − { x 0 , x i } satisfying that x i has a neighbour y on T (r i j , x j ) . Obviously, r i ∈
 (T [ r i j , x i )) and r j ∈ V (T [ r i j , x j )) . 

Set T ∗ = T − { r i r + i 
} + { x i y } . Then T ∗ is a spanning tree with L (T ∗) = (L (T ) − { x i } ) ∪ { r + 

i 
} . Then I(T ∗) = (I(T ) − { r + 

i 
} ) ∪

{ x i } . Note that d T ∗ (x 0 , r i ) = d T (x 0 , r i ) , deg T ∗ (r i ) = deg T (r i ) − 1 , d T ∗ (x 0 , y ) = d T (x 0 , y ) and deg T ∗ (y ) = deg T (y ) + 1 . Note that

deg T ∗ (x i ) = 2 , deg T (r + 
i 
) = 2 and (deg T (z) − 2) d T (x 0 , z) = (deg T ∗ (z) − 2) d T ∗ (x 0 , z) for all z ∈ I(T ∗) ∩ I(T ) − { r i , y } . Hence, 

f ( T ∗, x 0 ) − f ( T , x 0 ) = 

∑ 

z∈ I ( T ∗) 
( de g T ∗ ( z ) − 2 ) d T ∗ ( x 0 , z ) −

∑ 

z∈ I ( T ) 
( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ I ( T ∗) \ { x i } 
( de g T ∗ ( z ) − 2 ) d T ∗ ( x 0 , z ) −

∑ 

z∈ I ( T ) \ { r + i } 
( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ { r i ,y } 
( de g T ∗ ( z ) − 2 ) d T ∗ ( x 0 , z ) −

∑ 

z∈ { r i ,y } 
( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ { r i ,y } 
( de g T ∗ ( z ) − de g T ( z ) ) d T ( x 0 , z ) 

= d T ( x 0 , y ) − d T ( x 0 , r i ) . 

This together with (C2) implies that d T (x 0 , r i ) ≥ d T (x 0 , y ) . (1) 

If y ∈ V (T (r i j , r j ]) , we set T ′ = T − { yy −} + { x i y } . Then T ′ is a spanning tree and I(T ′ ) = (I(T ) − { y −} ) ∪ { x i } . If deg T (y −) ≥
3 , we have L (T ′ ) = L (T ) − { x i } , contradicting ( C1 ). So deg T (y −) = 2 . Note that (deg T (z) − 2) d T (x 0 , z) = (deg T ′ (z) − 2) d T ′ (x 0 , z)

for all z ∈ I(T ∗) ∩ I(T ) − V (T [ y, r j ]) . We have 

f 
(
T ′ , x 0 

)
− f ( T , x 0 ) = 

∑ 

z∈ I ( T ′ ) 
( de g T ′ ( z ) − 2 ) d T ′ ( x 0 , z ) −

∑ 

z∈ I ( T ) 
( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ I ( T ′ ) \ { x i } 
( de g T ′ ( z ) − 2 ) d T ′ ( x 0 , z ) −

∑ 

z∈ I ( T ) \ { y −} 
( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ V ( T [ y,r j ] ) 
( de g T ′ ( z ) − 2 ) d T ′ ( x 0 , z ) −

∑ 

z∈ V ( T [ y,r j ] ) 
( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ V ( T [ y,r j ] ) 
( de g T ( z ) − 2 ) ( d T ′ ( x 0 , z ) − d T ( x 0 , z ) ) 

≥
∑ 

z∈ V ( T [ y,r j ] ) 
( de g T ( z ) − 2 ) [ d T ( x 0 , r i ) − d T ( x 0 , y ) + 2 ] . 

This together with (1) implies that f (T ′ , x 0 ) − f (T , x 0 ) ≥ 2 
∑ 

z∈ V (T [ y,r j ]) 

(deg T (z) − 2) . Noting that r j ∈ V (T [ y, r j ]) , we get

f (T ′ ) − f (T ) ≥ f (T ′ , x 0 ) − f (T , x 0 ) ≥ 2[ deg T (r j ) − 2] ≥ 2 , contrary to ( C2 ). 

If y ∈ V (T (r j , x j )) , we set T ′′ = T − { r j r + j 
} + { x i y } . Then T ′′ is a spanning tree and I(T ′′ ) = (I(T ) − { r + 

j 
} ) ∪ { x i } . If y − =

r j , then L (T ′′ ) = L (T ) − { x i } , contrary to ( C1 ). Thus, y − � = r j . Note that deg T ′′ (r j ) = deg T (r j ) − 1 , d T ′′ (x 0 , r j ) = d T (x 0 , r j ) ,
4 
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deg T (y ) = 2 , deg T ′′ (y ) = deg T (y ) + 1 = 3 . From (1) , we have d T ′′ (x 0 , y ) ≥ d T (x 0 , r i ) + 2 ≥ d T (x 0 , y ) + 2 . By the similar discus-

sion to that in the proof of (1) , 

f 
(
T ′ ′ , x 0 

)
− f ( T , x 0 ) = 

∑ 

z∈ I ( T ′ ′ ) ( de g T ′ ′ ( z ) − 2 ) d T ′ ′ ( x 0 , z ) −
∑ 

z∈ I ( T ) ( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ I ( T ′ ′ ) \ { x i } ( de g T ′ ′ ( z ) − 2 ) d T ′ ′ ( x 0 , z ) −
∑ 

z∈ I ( T ) \ { r + j } ( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

∑ 

z∈ { r j ,y } ( de g T ′ ′ ( z ) − 2 ) d T ′ ′ ( x 0 , z ) −
∑ 

z∈ { r j ,y } ( de g T ( z ) − 2 ) d T ( x 0 , z ) 

= 

(
de g T ′ ′ 

(
r j 
)

− de g T 
(
r j 
))

d T 
(
x 0 , r j 

)
+ d T ′ ′ ( x 0 , y ) 

= d T ′ ′ ( x 0 , y ) − d T 
(
x 0 , r j 

)
> d T ′ ′ ( x 0 , y ) − d T ( x 0 , y ) . 
≥ 2 . 

This implies that f (T ′′ ) − f (T ) ≥ f (T ′′ , x 0 ) − f (T , x 0 ) > 2 , also contradicting ( C2 ). This proves Claim 3.3 . �

Claim 3.4. Let 1 ≤ i � = j ≤ t. Then r −
i j 

/ ∈ N G (x i ) and r + 
i j 

/ ∈ N G (x 0 ) . 

Proof. Suppose that Claim 3.4 is false. Set 

T ∗ = 

{
T −

{
r −

ij 
r ij 

}
+ 

{
x i r 

−
ij 

}
, if x i r 

−
ij 

∈ E ( G ) 

T −
{

r ij r 
+ 
ij 

}
+ 

{
x 0 r 

+ 
ij 

}
, if x 0 r 

+ 
ij 

∈ E ( G ) . 

Then T ∗ is a spanning tree with | L (T ∗) | < | L (T ) | , contrary to ( C1 ). �

For 0 ≤ i ≤ t , let y i be the neighbour of x i such that d T (x i , y i ) = g(T , x i ) . According to Claim 3.3 , y i ∈ V (T (x 0 , x i )) for 1 ≤ i ≤
t . We denote the successor of y i on T [ x 0 , x i ] by y + 

i 
. Set I 1 = { i ∈ [1 , t] : y i ∈ V (T [ r i , x i )) } and I 2 = { i ∈ [1 , t] : y i ∈ V (T (x 0 , r i )) } .

Obviously, I 1 ∩ I 2 = ∅ and I 1 ∪ I 2 = [1 , t] . 

Claim 3.5. For i ∈ I 1 , there exists z i ∈ V (T [ y i , x i )) satisfying that z + 
i 

/ ∈ N G [ x i ] and V (T [ y i , z i ]) ⊆ N G (x i ) where N G [ x i ] = N G (x i ) ∪
{ x i } and z + 

i 
is the successor of z i on T [ x 0 , x i ] . 

Proof. Suppose that Claim 3.5 is false. Then there is an integer i ∈ I 1 such that N G [ x i ] ∩ V (T [ r i , x i ]) = V (T [ y i , x i ]) . Since G is 2-

connected, G − y i is connected. There is u i ∈ V (T (y i , x i )) such that u i has a neighbour v i in T − T [ y i , x i ] . Set T ∗ = T − { u −
i 

u i } +
{ u −

i 
x i } . Then T ∗ is a spanning tree with L (T ∗) = (L (T ) − { x i } ) ∪ { u i } that satisfies (C1) and (C2) . Noting that d T ∗ (u i , y i ) =

d T (x i , y i ) , we have d T ∗ (u i , v i ) > d T (x i , y i ) , which implies that g(T ∗, u i ) > g(T , x i ) . On the other hand, by Claims 3.2 and 3.3 ,

we have N G (x j ) ∩ V (T (r i , x i )) = ∅ for 0 ≤ j � = i ≤ t . Hence, g(T ∗, x j ) = g(T , x j ) for 0 ≤ j � = i ≤ t . We have g(T ∗) > g(T ) , contrary

to ( C3 ). �

By Claim 3.5 , there exists z i ∈ V (T [ y i , x i )) satisfying that z + 
i 

/ ∈ N G [ x i ] , V (T [ y i , z i ]) ⊆ N G (x i ) and let L ′ 
1 
(T ) = { z i : i ∈ I 1 } . De-

note z j = y j for j ∈ I 2 and let L ′ 2 (T ) = { z j : j ∈ I 2 } . For h = 1 , 2 , define X h = { x i : i ∈ I h } and L h (T ) = { z + 
i 

: z i ∈ L ′ 
h 
(T ) } . 

By the choice of z i for i ∈ I 1 ∪ I 2 , we define two surjections θh : X 
h → L ′ 

h 
(T ) for h = 1 , 2 . Note that z i ∈ V (T (y i , x i )) for

i ∈ I 1 . Since V (T (y i , x i )) ∩ V (T (y j , x j )) = ∅ for i � = j ∈ I 1 , θ1 is a bijection. Thus | L 1 (T ) | = | L ′ 
1 
(T ) | = | I 1 | . 

Claim 3.6. | L 2 (T ) | ≥ | L ′ 
2 
(T ) | ≥ � | I 2 | r−3 � . 

Proof. Let θ−1 
2 

(z i ) be the preimage of z i in X 2 for z i ∈ L ′ 2 (T ) . Suppose that θ−1 
2 

(z i ) = { x i s : s ≥ 1 } for i ∈ I 2 and z i = z i 1 = . . . =
z i s . By Claim 3.3 , we have z i ∈ V (T (x 0 , x i j )) for 1 ≤ j ≤ s . Hence, z i ∈ V (T (x 0 , r i 1 ... i s ]) . We claim that 

{ z −
i 
, x i 1 , . . . , x i s } ∪ { z + 

i j 
: 1 ≤ j ≤ s } is independent in G. (∗) 

Suppose to the contrary that (∗) is false. By Claim 3.1 , { x i 1 , . . . , x i s } is independent. Then one of the following cases

occurs. 

• z −
i 

z + 
i j 

∈ E(G ) for some j ∈ [1 , s ] . If deg T (z i ) ≥ 3 , then T ∗ = T − { z −
i 

z i , z i z 
+ 
i j 
} + { z i x i j , z −i z + 

i j 
} is a spanning tree with L (T ∗) =

L (T ) − { x i j } , contrary to (C1) . Hence, deg T (z i ) = 2 . For any h ∈ [1 , s ] \ { j} , T (1) = T − { z −
i 

z i , z i z 
+ 
i j 
, r i h r 

+ 
i h 
} + { z i x i j , z −i z + 

i j 
, z i x i h }

is a spanning tree with L (T (1) ) = (L (T ) − { x i j , x i h } ) ∪ { r + 
i h 
} , contrary to ( C1 ). 

• z −
i 

x i j ∈ E(G ) for some j ∈ [1 , s ] . It follows that d T (x i j , z 
−
i 
) = d T (x i j , z i ) + 1 > g(T , x i j ) , contrary to the choice of z i . 

• x i j z 
+ 
i h 

∈ E(G ) for some j � = h ∈ [1 , s ] . If z + 
i j 

= z + 
i h 

, then T (2) = T − { z i z + i j 
, x −

i j 
x i j } + { z i x i j , z + i j 

x i j } is a spanning tree with

L (T (2) ) ⊆ (L (T ) − { x i j } ) ∪ { x −
i j 
} . It is straight to check that f (T (2) , x 0 ) > f (T , x 0 ) , which indicates that f (T (2) ) > f (T ) , con-

trary to ( C2 ). Hence z + 
i j 

� = z + 
i h 

. Then T (3) = T − { z i z + i h 
} + { x i j z + i h 

} is a spanning tree with L (T (3) ) = L (T ) − { x i j } , contrary to

( C1 ). 
• z + 

i j 
z + 

i h 
∈ E(G ) for some j � = h ∈ [1 , s ] . Then T (4) = T − { z i z + i j 

, z i z 
+ 
i h 
} + { z + 

i j 
z + 

i h 
, z i x i j } is a spanning tree with L (T (4) ) = L (T ) −
{ x i j } , contrary to ( C1 ). 

5 
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Therefore, (∗) is true. Since G is K 1 ,r -free and z is adjacent to each vertex in { z −
i 
, x i 1 , . . . , x i s } ∪ { z + 

i j 
: 1 ≤ j ≤ s } , we have

s ≤ r − 3 . This implies that | L 2 (T ) | ≥ | L ′ 
2 
(T ) | ≥ � | I 2 | r−3 � . �

Set U = L (T ) ∪ L 1 (T ) ∪ L 2 (T ) . By the definitions of L (T ) , L 1 (T ) and L 2 (T ) , three vertex sets L (T ) , L 1 (T ) and L 2 (T ) are

disjoint. Thus | U| = | L (T ) | + | L 1 (T ) | + | L 2 (T ) | . 
Claim 3.7. U is independent in G . 

Proof. First, we show that L 1 (T ) ∪ L 2 (T ) is independent. Set T a = T − { z i z + i 
, z j z 

+ 
j 
} + { z i x i , z j x j } for z i � = z j ∈ L ′ 1 (T ) ∪ L ′ 2 (T ) .

By Claim 3.3 , z i ∈ V (T (x 0 , x i )) and z j ∈ V (T (x 0 , x j )) . Then T a is a spanning tree with L (T a ) ⊆ (L (T ) − { x i , x j } ) ∪ { z + 
i 
, z + 

j 
} . By

Remark 3.1 , L (T a ) is independent in G . Hence, z + 
i 

z + 
j 

/ ∈ E(G ) . 

Next, we show that both L (T ) ∪ L 1 (T ) and L (T ) ∪ L 2 (T ) are independent sets. Set T b = T − { z i z + i 
} + { z i x i } for z i ∈ L ′ 

1 
(T ) ∪

L ′ 2 (T ) . Then T b is a spanning tree with L (T b ) ⊆ (L (T ) − { x i } ) ∪ { z + 
i 
} . By Remark 3.1 , L (T b ) is independent in G . Hence, z + 

i 
x j /∈

E(G ) for j ∈ [0 , t] − { i } . On the other hand, by Claims 3.1 and 3.5 , L (T ) is independent in G and z + 
i 

/ ∈ N G (x i ) for z i ∈ L ′ 
1 
(T ) ∪

L ′ 
2 
(T ) . 

Therefore, U is independent in G . �

Claim 3.8. α(G ) = k + 1 + � k 
r−3 � , | I 1 | + | I 2 | = t = k , | I 1 | + � | I 2 | r−3 � = � k 

r−3 � , and k = p(r − 3) for some integer p > 1 . 

Proof. Recall that | I 1 | + | I 2 | = t ≥ k and | L 1 (T ) | = | L ′ 1 (T ) | = | I 1 | . By Claim 3.6 , | L 2 (T ) | ≥ | L ′ 2 (T ) | ≥ � | I 2 | r−3 � . This together with

Claim 3.7 and the assumption α(G ) ≤ k + � k +1 
r−3 � − � 1 

| r−k −3 | +1 
� , we have 

α( G ) ≥ | U| = | L ( T ) | + | L 1 ( T ) | + | L 2 ( T ) | 
≥ t + 1 + | I 1 | + 

⌈ | I 2 | 
r−3 

⌉
≥ t + 1 + 

⌈
t 

r−3 

⌉
≥ k + 1 + 

⌈
k 

r−3 

⌉
, 

which implies α(G ) = k + 1 + � k 
r−3 � , | I 1 | + | I 2 | = t = k , | I 1 | + � | I 2 | r−3 � = � k 

r−3 � , and k = p(r − 3) for some integer p > 1 . �

Recall that L 2 (T ) = { z + 
i 

: z i ∈ L ′ 2 (T ) } . By Claim 3.8 , we have p = 

k 
r−3 with p > 1 and there is a partition { X 1 , . . . , X p } of

L (T ) − { x 0 } satisfying that | X i | = 1 for i ∈ I 1 , and | X i | = r − 3 for i ∈ I 2 . By relabeling x 1 , . . . , x k (if necessary), we may assume

that for each i ∈ [1 , p] , x i ∈ X i . For i ∈ I 2 , let X i = { x i 1 , . . . , x i r−3 
} , where i 1 = i . Then z + 

i 1 
= . . . = z + 

i r−3 
= z + 

i 
. We denote F ∗ = { z i :

i ∈ [1 , p] , z i ∈ V (T (x 0 , y 0 )) } . By Claim 3.2 , we assume that y 0 ∈ V (T (x 0 , r i 1 ]) for some i 1 ∈ [1 , k ] . Denote by r 0 the first branch

vertex of T on T [ x 0 , r i 1 ] (possible r 0 = r i 1 ) and r + 
0 

the successor of r 0 on T [ x 0 , x i 1 ] . 

Case 1 F ∗ = ∅ . 
Claim 3.9. There exists z 0 ∈ V (T (x 0 , y 0 )) such that z 0 / ∈ N G [ x 0 ] and V (T [ z + 

0 
, y 0 ]) ⊆ N G (x 0 ) , where z + 

0 
is the successor of z 0 on

T [ x 0 , x i 1 ] . 

Proof. Suppose that Claim 3.9 is false. Then N G [ x 0 ] ∩ V (T [ x 0 , r i 1 ]) = V (T [ x 0 , y 0 ]) and r 0 , r i 1 and y 0 are all on the path

T [ x 0 , x i 1 ] . If y 0 ∈ V (T (r 0 , r i 1 ]) , then x 0 r 
+ 
0 

∈ E(G ) , a contradiction to Claim 3.4 . If y 0 ∈ V (T (x 0 , r 0 ]) , since G − y 0 is a connected

graph, there exists u 0 ∈ V (T (x 0 , y 0 )) satisfying that u 0 has a neighbour v 0 in T − T [ x 0 , y 0 ] . Set T ∗ = T − { u 0 u + 0 
} + { x 0 u + 0 

} .
Then T ∗ is a spanning tree with L (T ∗) = (L (T ) − { x 0 } ) ∪ { u 0 } that satisfies ( C 1 ) and ( C 2 ). Noting that d T ∗ (u 0 , y 0 ) = d T (x 0 , y 0 ) ,

we have d T ∗ (u 0 , v 0 ) > d T (x 0 , y 0 ) and g(T ∗, u 0 ) > g(T , x 0 ) . On the other hand, since F ∗ = ∅ , we have N G (x j ) ∩ V (T (x 0 , y 0 )) = ∅
and g(T ∗, x j ) = g(T , x j ) for 1 ≤ j ≤ k . Hence g(T ∗) > g(T ) , contrary to ( C3 ). �

Claim 3.10. { z 0 } ∪ U is independent in G . 

Proof. Recall that U is independent in G . 

First, we prove that { z 0 } ∪ L (T ) is independent in G . We have z 0 / ∈ N G (x 0 ) by Claim 3.9 . Set T a = T − { z 0 z + 0 
} + { x 0 z + 0 

} . Then

T a is a spanning tree with L (T a ) = (L (T ) − { x 0 } ) ∪ { z 0 } . By Remark 3.1 , z 0 is a leaf of T a and L (T a ) is independent in G . Hence,

z 0 x i / ∈ E(G ) for i ∈ [1 , k ] . 

Next, we show that { z 0 } ∪ L 1 (T ) ∪ L 2 (T ) is independent in G . Set T b = T − { z 0 z + 0 
, z i z 

+ 
i 
} + { x 0 z + 0 

, z i x i } for z i ∈ L ′ 1 (T ) ∪ L ′ 2 (T ) .

Since F ∗ = ∅ and z i ∈ V (T (x 0 , r i )) , T b is a spanning tree with L (T b ) ⊆ (L (T ) − { x 0 , x i } ) ∪ { z 0 , z + i 
} . By Remark 3.1 , both z 0 and

z + 
i 

are leaves of T b and L (T b ) is independent. Hence, z 0 z 
+ 
i 

/ ∈ E(G ) for z i ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) . 

Therefore, { z 0 } ∪ U is independent in G . �

By Claim 3.10 , we have α(G ) ≥ |{ z 0 } ∪ U| ≥ k + 1 + � k 
r−3 � + 1 , contrary to Claim 3.8 . Hence Theorem 1.8 holds for Case 1.

Case 2 F ∗ � = ∅ . 
Choose z j ∈ V (T (x 0 , y 0 )) such that d T (x 0 , z j ) is as large as possible for z j ∈ F ∗. Denote the successor of z j on T (x 0 , x j 1 )

and T (x 0 , x i 1 ) by z + 
j 

and z ∗
j 
, respectively. By Claim 3.3 , we have r i 1 j 1 ∈ V (T [ z j , r i 1 ]) . 

Claim 3.11. z j 
+ , z ∗

j 
/ ∈ N G (x 0 ) and there exists u 0 ∈ V (T (z j , y 0 )) (possible u 0 = z ∗

j 
) satisfying that u 0 / ∈ N G (x 0 ) and V (T [ u + 

0 
, y 0 ]) ⊆

N (x ) . 
G 0 

6 
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Proof. If x 0 z j 
+ ∈ E(G ) , then T a = T − { z j z + j 

, r j 1 r 
+ 
j 1 
} + { x 0 z j + , z j x j 1 } with L (T a ) = (L (T ) − { x 0 , x j 1 } ) ∪ { r + 

j 1 
} , contrary to ( C1 ).

Then z j 
+ / ∈ N G (x 0 ) . If r i 1 j 1 � = z j , then z j 

+ = z ∗
j 

and thus z ∗
j 

/ ∈ N G (x 0 ) . If r i 1 j 1 = z j , then T b = T − { z j z ∗j } + { x 0 z j ∗} with L (T b ) =
L (T ) − { x 0 } , contrary to ( C1 ). So z ∗

j 
/ ∈ N G (x 0 ) . Therefore, there exists u 0 ∈ V (T (z j , y 0 )) (possible u 0 = z ∗

j 
) satisfying that

u 0 / ∈ N G (x 0 ) and V (T [ u + 
0 
, y 0 ]) ⊆ N G (x 0 ) . �

Set L ∗(T ) = (L (T ) − { x j 1 } ) ∪ { r + 
j 1 
} and U 

∗ = L ∗(T ) ∪ L 1 (T ) ∪ L 2 (T ) . 

Claim 3.12. U 

∗ is independent in G . 

Proof. Note that U is independent in G . 

First, we show that L ∗(T ) is independent. Set T a = T − { r j 1 r + j 1 
} + { z j x j 1 } . Then T a is a spanning tree with L (T a ) = (L (T ) −

{ x j 1 } ) ∪ { r + 
j 1 
} . By Remark 3.1 , L (T a ) is independent. Hence, r + 

j 1 
x h / ∈ E(G ) for h ∈ [0 , k ] − { j 1 } . 

Next, we prove that { r + 
j 1 
} ∪ (L 1 (T ) ∪ L 2 (T ) − { z + 

j 
} ) is independent in G . Set T b = T − { r j 1 r + j 1 

, z h z 
+ 
h 
} + { z j x j 1 , z h x h } for z h ∈

L ′ 1 (T ) ∪ L ′ 2 (T ) − { z j } . Then by Claim 3.3 and the maximality of d T (x 0 , z j ) , T b is a spanning tree with L (T b ) ⊆ (L (T ) −
{ x j 1 , x h } ) ∪ { r + 

j 1 
, z + 

h 
} . By Remark 3.1 , both r + 

j 1 
and z + 

h 
are leaves of T b and L (T b ) is independent in G . Hence, r + 

j 1 
z + 

h 
/ ∈ E(G )

for z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) − { z j } . 

At last, we may consider that z + 
j 

r + 
j 1 

/ ∈ E(G ) . In fact, if z + 
j 

r + 
j 1 

∈ E(G ) , then T c = T − { r j 1 r + j 1 
, z j z 

+ 
j 
} + { z j x j 1 , z + j 

r + 
j 1 
} with L (T c ) =

L (T ) − { x j 1 } , contrary to ( C1 ). 

Therefore, U 

∗ is independent in G . �

Claim 3.13. r i 1 j 1 / ∈ T [ r 0 , y 0 ) . 

Proof. Assume that r i 1 j 1 ∈ T [ r 0 , y 0 ) . This together with Claim 3.2 and r i 1 j 1 ∈ V (T [ z j , r i 1 ]) implies that r i 1 j 1 ∈ V (T [ z j , y 0 )) . Let

u 0 be the vertex in Claim 3.11 , we have V (T [ u + 
0 
, y 0 ]) ⊆ N G (x 0 ) . By Claim 3.4 , u 0 ∈ V (T (r i 1 j 1 , y 0 )) . Then it follows that r i 1 j 1 ∈

 (T [ z j , u 0 )) . Thus u 0 / ∈ N G (z + 
j 
) . Otherwise, if r i 1 j 1 ∈ V (T (z j , u 0 )) , then T ′ = T − { z j z + j 

, u 0 u 
+ 
0 
, r i 1 j 1 r 

+ 
i 1 j 1 

} + { x 0 u + 0 
, u 0 z 

+ 
j 
, x j 1 z j } is a

spanning tree with L (T ′ ) ⊆ L (T ) − { x 0 , x j 1 } + { r + 
i 1 j 1 

} , contrary to ( C1 ). If r i 1 j 1 = z j , then T ′′ = T − { z j z + j 
, u 0 u 

+ 
0 
} + { x 0 u + 0 

, u 0 z 
+ 
j 
}

is a spanning tree with L (T ′′ ) ⊆ L (T ) − { x 0 } , contrary to ( C1 ). 

Now we show that { u 0 } ∪ U 

∗ or { r + 
i 1 j 1 

} ∪ U 

∗ is independent in G . 

Note that U 

∗ is independent. Assume that w ∈ { u 0 , r + i 1 j 1 
} . 

First, we show that { w } ∪ L ∗(T ) is independent. Set 

T a := 

{
T −

{
u 0 u 

+ 
0 
, r j 1 r 

+ 
j 1 

}
+ 

{
x 0 u 

+ 
0 
, z j x j 1 

}
, if w = u 0 ;

T −
{

r i 1 j 1 r 
+ 
i 1 j 1 

, r j 1 r 
+ 
j 1 

}
+ 

{
x 0 u 

+ 
0 
, z j x j 1 

}
, if w = r + 

i 1 j 1 
. 

Then by Claim 3.3 , T a is a spanning tree with L (T a ) ⊆ (L (T ) − { x 0 , x j 1 } ) ∪ { w, r + 
j 1 
} . By Remark 3.1 , both w and r + 

j 1 
are leaves of

T a and L (T a ) is independent in G . By Claims 3.4 and 3.11, w / ∈ N G (x 0 ) . Hence, wr + 
j 1 

/ ∈ E(G ) and wx h / ∈ E(G ) for h ∈ [0 , k ] − { j 1 } .
Next, we prove that { u 0 } ∪ L 1 (T ) ∪ L 2 (T ) or { r + 

i 1 j 1 
} ∪ L 1 (T ) ∪ L 2 (T ) is independent in G . Note that w / ∈ N G (z + 

j 
) . For z h ∈

L ′ 1 (T ) ∪ L ′ 2 (T ) − { z j } , we set 

T b := 

{
T −

{
u 0 u 

+ 
0 
, z h z 

+ 
h 

}
+ 

{
x 0 u 

+ 
0 
, z h x h 

}
, if z + 

h 
/ ∈ F ∗;

T −
{

r i 1 j 1 r 
+ 
i 1 j 1 

, z j z 
+ 
j 
, z h z 

+ 
h 

}
+ 

{
z + 

h 
r + 

i 1 j 1 
, z h x h 1 , z j x j 1 

}
, if z + 

h 
∈ F ∗ and r + 

i 1 j 1 
z + 

h 
∈ E ( G ) . 

• If z + 
h 

/ ∈ F ∗, then by Claim 3.3 , T b is a spanning tree with L (T b ) ⊆ (L (T ) − { x 0 , x h } ) ∪ { u 0 , z + h 
} . By Remark 3.1 , both u 0 and

z + 
h 

are leaves of T b and L (T b ) is independent. Hence, u 0 z 
+ 
h 

/ ∈ E(G ) for z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) . 

• If z + 
h 

∈ F ∗ and r + 
i 1 j 1 

z + 
h 

∈ E(G ) , then by Claim 3.3 , T b is a spanning tree of G with L (T b ) = (L (T ) − { x h 1 , x j 1 } ) ∪ { z + 
j 
} , contrary

to ( C1 ). Thus r + 
i 1 j 1 

z + 
h 

/ ∈ E(G ) . Hence, r + 
i 1 j 1 

z + 
h 

/ ∈ E(G ) for z h ∈ L ′ 1 (T ) ∪ L ′ 2 (T ) . 

Therefore, { u 0 } ∪ U 

∗ or { r + 
i 1 j 1 

} ∪ U 

∗ is independent in G . Thus α(G ) ≥ | U 

∗| + 1 ≥ k + 1 + � k 
r−3 � + 1 , contrary to Claim 3.8 .

This proves Claim 3.13 . �

By Claim 3.13 , r i 1 j 1 ∈ V (T [ y 0 , r i 1 ]) ∪ V (T [ y 0 , r j 1 ]) . Without loss of generality, assume that r i 1 j 1 ∈ V (T [ y 0 , r j 1 ]) . 

Claim 3.14. One of the following two statements holds. 

(i) u 0 / ∈ N G (z + 
j 
) or there exists w 0 ∈ V (T (z + 

j 
, u 0 )) satisfying that w 0 / ∈ N G (z + 

j 
) and V (T [ w 

+ 
0 
, u 0 ]) ⊆ N G (z + 

j 
) ; 

ii) u 0 = z + 
j 

or V (T [ z + 
j 
, u 0 ]) ⊆ N G [ z 

+ 
j 

] . 

Proof. Suppose that Claim 3.14 (ii) is false. Then | V (T [ z + 
j 
, u 0 ]) | ≥ 3 and V (T [ z + 

j 
, u 0 ]) � N G [ z 

+ 
j 

] . If u 0 ∈ N G (z + 
j 
) , then since

 (T [ z + 
j 
, u 0 ]) � N G [ z 

+ 
j 

] , there is w 0 ∈ V (T (z + 
j 
, u 0 )) satisfying that w 0 / ∈ N G (z + 

j 
) and V (T [ w 

+ 
0 
, u 0 ]) ⊆ N G (z + 

j 
) . �

Subcase 2.1 Claim 3.14 (i) holds. 
7 
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In this subcase, w 0 / ∈ N G (z + 
j 
) ∪ N G (x 0 ) . In fact, suppose that x 0 w 0 ∈ E(G ) . Then by Claim 3.3 , T ∗ = T −

{ r j 1 r + j 1 
, w 0 w 

+ 
0 
, z j z 

+ 
j 
} + { z j x j 1 , x 0 w 0 , z 

+ 
j 

w 

+ 
0 
} is a spanning tree with L (T ∗) = (L (T ) − { x 0 , x j 1 } ) ∪ { r + 

j 1 
} , contrary to ( C1 ). 

Claim 3.15. If u 0 / ∈ N G (z + 
j 
) , then { u 0 } ∪ U 

∗ is independent in G . 

Proof. Note that U 

∗ is independent in G . 

First, we show that { u 0 } ∪ L ∗(T ) is independent in G . Set T a = T − { u 0 u + 0 
, r j 1 r 

+ 
j 1 
} + { x 0 u + 0 

, z j x j 1 } . Then by Claim 3.3 , T a is a

spanning tree of G with L (T a ) ⊆ (L (T ) − { x 0 , x j 1 } ) ∪ { u 0 , r + j 1 
} . By Remark 3.1 , both u 0 and r + 

j 1 
are leaves of T a and L (T a ) is an

independent set. By Claim 3.11 , u 0 / ∈ N G (x 0 ) . Hence, u 0 r 
+ 
j 1 

/ ∈ E(G ) and u 0 x h / ∈ E(G ) for h ∈ [0 , k ] − { j 1 } . 
Next, we prove that { u 0 } ∪ L 1 (T ) ∪ L 2 (T ) is independent in G . Note that u 0 / ∈ N G (z + 

j 
) . For z h ∈ L ′ 

1 
(T ) ∪ L ′ 

2 
(T ) − { z j } , we set

T b := 

{
T −

{
u 0 u 

+ 
0 
, z h z 

+ 
h 

}
+ 

{
x 0 u 

+ 
0 
, z h x h 1 

}
, if z + 

h 
/ ∈ F ∗;

T −
{

u 0 u 

+ 
0 
, z h z 

+ 
h 
, r h r 

+ 
h 

}
+ 

{
x 0 u 

+ 
0 
, z h x h 1 , x j 1 z j 

}
, if z + 

h 
∈ F ∗. 

Then by Claim 3.3 , T b is a spanning tree of G with 

L ( T b ) ⊆
{

( L ( T ) − { x 0 , x h } ) ∪ 

{
u 0 , z 

+ 
h 

}
, if z + 

h 
/ ∈ F ∗;(

L ( T ) −
{

x 0 , x h 1 , x j 1 
})

∪ 

{
u 0 , z 

+ 
h 
, r + 

h 

}
, if z + 

h 
∈ F ∗. 

By Remark 3.1 , both u 0 and z + 
h 

are leaves of T b and L (T b ) is independent in G . Hence, u 0 z 
+ 
h 

/ ∈ E(G ) for z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) . 

Therefore, { u 0 } ∪ U 

∗ is independent in G . �

Claim 3.16. If u 0 ∈ N G (z + 
j 
) , then { w 0 } ∪ U 

∗ is independent in G . 

Proof. Note that U 

∗ is independent in G . 

First, we show that { w 0 } ∪ L ∗(T ) is independent in G . Set T a = T − { w 0 w 

+ 
0 
, z j z 

+ 
j 
, r j 1 r 

+ 
j 1 
} + { x 0 u + 0 

, z + 
j 

w 

+ 
0 
, z j x j 1 } . Then by

Claim 3.3 , T a is a spanning tree of with L (T a ) ⊆ (L (T ) − { x 0 , x j 1 } ) ∪ { w 0 , r 
+ 
j 1 
} . By Remark 3.1 , w 0 and r + 

j 1 
are two leaves of T a

and L (T a ) is independent in G . If x 0 w 0 ∈ E(G ) , then by Claim 3.3 , T ∗ = T − { r j 1 r + j 1 
, w 0 w 

+ 
0 
, z j z 

+ 
j 
} + { z j x j 1 , x 0 w 0 , z 

+ 
j 

w 

+ 
0 
} is a span-

ning tree with L (T ∗) = (L (T ) − { x 0 , x j 1 } ) ∪ { r + 
j 1 
} , contrary to ( C1 ). Thus w 0 / ∈ N G (x 0 ) . Hence, w 0 r 

+ 
j 1 

/ ∈ E(G ) and w 0 x h / ∈ E(G ) for

h ∈ [0 , t] − { j 1 } . 
Next, we prove that { w 0 } ∪ L 1 (T ) ∪ L 2 (T ) is independent in G . Note that w 0 / ∈ N G (z + 

j 
) . For z h ∈ L ′ 

1 
(T ) ∪ L ′ 

2 
(T ) − { z j } , we set

T b := 

{
T −

{
w 0 w 

+ 
0 
, z j z 

+ 
j 
, z h z 

+ 
h 

}
+ 

{
z + 

j 
w 

+ 
0 
, z h x h 1 , z j x j 1 

}
, if z + 

h 
/ ∈ F ∗;

T −
{

w 0 w 

+ 
0 
, z j z 

+ 
j 
, z h z 

+ 
h 
, r h r 

+ 
h 

}
+ 

{
z + 

j 
w 

+ 
0 
, x 0 u 

+ 
0 
, z h x h 1 , z j x j 1 

}
, if z + 

h 
∈ F ∗. 

Then by Claim 3.3 , T b is a spanning tree with 

L ( T b ) ⊆
{(

L ( T ) −
{

x h 1 , x j 1 
})

∪ 

{
w 0 , z 

+ 
h 

}
, if z + 

h 
/ ∈ F ∗;(

L ( T ) −
{

x 0 , x h 1 , x j 1 
})

∪ 

{
w 0 , z 

+ 
h 
, r + 

h 

}
, if z + 

h 
∈ F ∗. 

By Remark 3.1 , both w 0 and z + 
h 

are leaves of T b and L (T b ) is independent in G . Hence, w 0 z 
+ 
h 

/ ∈ E(G ) for z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) . 

Therefore, { w 0 } ∪ U 

∗ is independent in G . �

Subcase 2.2 Claim 3.14 (ii) holds and y 0 � = r j h for some 1 ≤ h ≤ r − 3 . 

Claim 3.17. deg T (x ) = 2 for any x ∈ V (T [ z + 
j 
, y −

0 
]) . 

Proof. Suppose that deg T (x ) ≥ 3 for some x ∈ V (T [ z + 
j 
, y −

0 
]) . Denote the successor of x on T [ x 0 , y 0 ] by x + . If x ∈ V (T [ u 0 , y 

−
0 

]) ,

then x + ∈ N G (x 0 ) . Set T ∗ = T − { xx + } + { x 0 x + } . Then T ∗ is a spanning tree with L (T ∗) = L (T ) − { x 0 } , contrary to ( C1 ).

If x ∈ V (T [ z + 
j 
, u −

0 
]) , then if | V (T [ z + 

j 
, u 0 ]) | = 2 , then x = z + 

j 
. Set T ′ = T − { z j z + j 

, r j 1 r 
+ 
j 1 
} + { x 0 u + 0 

, z j x j 1 } . Then T ′ is a span-

ning tree with L (T ′ ) = (L (T ) − { x 0 , x j 1 } ) ∪ { r + 
j 1 
} , contrary to ( C1 ). If | V (T [ z + 

j 
, u 0 ]) | ≥ 3 , then set T ′′ = T − { xx + , z j z + j 

, r j 1 r 
+ 
j 1 
} +

{ x 0 u + 0 
, z j x j 1 , z 

+ 
j 

x + } . Then T ′′ is a spanning tree with L (T ′′ ) = (L (T ) − { x 0 , x j 1 } ) ∪ { r + 
j 1 
} , contrary to ( C1 ). �

By Claims 3.3 and 3.17 , V (T [ x 0 , r i 1 j 1 ]) ⊇ V (T [ x 0 , y 0 ]) . Denote the successor of y 0 on T [ x 0 , x j 1 ] by y + 
0 

. 

Claim 3.18. { y 0 + } ∪ U 

∗ is independent in G . 

Proof. Note that U 

∗ is independent in G . 

First, we show that { y 0 + } ∪ L ∗(T ) is independent in G . Set T a = T − { y 0 y 0 + , z j z + j 
} + { x 0 y 0 , z j x j 1 } . Then by Claim 3.3 , T a

is a spanning tree with L (T a ) ⊆ (L (T ) − { x 0 , x j 1 } ) ∪ { y + 
0 
, z + 

j 
} . By Remark 3.1 , both y + 

0 
and z + 

j 
are two leaves of T a and L (T a )

is independent in G . So y 0 
+ x h / ∈ E(G ) for h ∈ [1 , t] − { j 1 } . By the choice of y 0 , y 0 

+ x 0 / ∈ E(G ) . If y 0 
+ r + 

j 1 
∈ E(G ) , then set T b =

T a − { r j 1 r + j 
} + { y 0 + r + j 

} . Thus L (T b ) = (L (T ) − { x 0 , x j 1 } ) ∪ { z + 
j 
} , contrary to ( C1 ). 
1 1 
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Next, we prove that { y 0 + } ∪ L 1 (T ) ∪ L 2 (T ) is independent. If y + 
0 

= z + 
h 

for some z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) − { z j } , then we need to

consider the graph G [ y 0 , x 0 , y 
−
0 
, y + 

0 
, x h 1 , . . . , x h r−3 

] . Since G is K 1 ,r -free, we have y + 
0 

y −
0 

∈ E(G ) or x + 
0 

y −
0 

∈ E(G ) or y + 
0 

x h l ∈ E(G )

for some 1 ≤ l ≤ r − 3 . 

• y + 
0 

y −
0 

∈ E(G ) . Then T ′ = T − { y 0 y + 0 
, y 0 y 

−
0 
, r h 1 r 

+ 
h 1 

} + { x 0 y 0 , y + 0 
y −

0 
, y 0 x h 1 } is a spanning tree with L (T ′ ) = (L (T ) − { x 0 , x h 1 } ) ∪

{ r + 
h 1 

} , contrary to ( C1 ). 

• x 0 y 
−
0 

∈ E(G ) . Then T ′′ = T − { y 0 y −0 , z j z + j 
, r h 1 r 

+ 
h 1 

} + { x 0 y −0 , z j x j 1 , y 0 x h 1 } is a spanning tree with L (T ′′ ) = (L (T ) −
{ x 0 , x j 1 , x h 1 } ) ∪ { z + 

j 
, r + 

h 1 
} , contrary to ( C1 ). 

• y + 
0 

x h l ∈ E(G ) for some 1 ≤ l ≤ r − 3 . Then T ′′′ = T − { y 0 y + 0 
, z j z 

+ 
j 
, r h l r 

+ 
h l 
} + { x 0 y 0 , z j x j l , y + 0 

x h l } is a spanning tree with

L (T ′′′ ) = (L (T ) − { x 0 , x j l , x h l } ) ∪ { z + 
j 
, r + 

h l 
} , contrary to ( C1 ). 

So y + 
0 

� = z + 
h 

for any z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) − { z j } . Set T c = T a − { z h z + h 

} + { z h x h 1 } for z h ∈ L ′ 
1 
(T ) ∪ L ′ 

2 
(T ) − { z j } . Then T c is a span-

ning tree with L (T c ) ⊆ (L (T ) − { x 0 , x j 1 , x h } ) ∪ { y + 
0 
, z + 

j 
, z + 

h 
} . By Remark 3.1 , y + 

0 
, z + 

j 
and z + 

h 
are leaves of T c and L (T c ) is indepen-

dent in G . Hence, y + 
0 

z + 
h 

/ ∈ E(G ) for z h ∈ L ′ 1 (T ) ∪ L ′ 2 (T ) . 

Therefore, { y 0 + } ∪ U 

∗ is independent in G . �

Subcase 2.3 Claim 3.14 (ii) holds and y 0 = r j h for any 1 ≤ h ≤ r − 3 . 

Claim 3.19. { r + 
j 1 

, . . . , r + 
j r−3 

, x 0 , y 
−
0 
} is an independent set and deg T (y 0 ) = r − 2 . 

Proof. We first show that { r + 
j 1 

, . . . , r + 
j r−3 

, x 0 } is independent in G . By Claim 3.4 , { r + 
j s 
, x 0 } is an independent set for 1 ≤ s ≤ r − 3 .

If r − 3 = 1 , then { r + 
i 1 

, x 0 } is independent in G . If r − 3 ≥ 2 , set T ∗ = T − { y 0 r + j p 
, y 0 r 

+ 
j q 
} + { z j x j p , z j x j q } for 1 ≤ p � = q ≤ r − 3 .

Then by Claim 3.3 , T ∗ is a spanning tree with L (T ∗) = (L (T ) − { x j p , x j q } ) ∪ { r + 
j p 

, r + 
j q 
} . By Remark 3.1 , L (T ∗) is independent in

G . Hence, r + 
j p 

r + 
j q 

/ ∈ E(G ) . 

Next, if x 0 y 
−
0 

∈ E(G ) , then by Claim 3.3 , T ′ = T − { y −
0 

y 0 , z j z 
+ 
j 
} + { x 0 y −0 , z j x j 1 } is a spanning tree with L (T ′ ) = (L (T ) −

{ x 0 , x j 1 } ) ∪ { z + 
j 
} , contrary to ( C1 ); if y −

0 
r + 

j s 
∈ E(G ) for some 1 ≤ s ≤ r − 3 , then by Claim 3.3 , T ′′ = T − { y −

0 
y 0 , y 0 r 

+ 
j s 
} +

{ x 0 y 0 , r + j s 
y −

0 
} is a spanning tree with L (T ′′ ) = (L (T ) − { x 0 , x j s } ) ∪ { r + 

j s 
} , contrary to ( C1 ). Therefore, { r + 

j 1 
, . . . , r + 

j r−3 
, x 0 , y 

−
0 
} is in-

dependent in G . 

Now we prove that deg T (y 0 ) = r − 2 . Assume that deg T (y 0 ) ≥ r − 1 and y 0 x ∈ E(T ) for x / ∈ { r + 
j 1 

, . . . , r + 
j r−3 

, y −
0 
} . Since G

is K 1 ,r -free and { y 0 , r + j 1 
, . . . , r + 

j r−3 
, x 0 , y 

−
0 
} is an induced K 1 ,r−1 , we have xy ∈ E(G ) for some y ∈ { r + 

j 1 
, . . . , r + 

j r−3 
, x 0 , y 

−
0 
} . By

Claim 3.4 , x 0 x / ∈ E (G ) . If xr + 
j s 

∈ E (G ) for some 1 ≤ s ≤ r − 3 , then T a = T − { y 0 r + j s 
, y 0 x } + { xr + 

j s 
, z j x j s } is a spanning tree with

L (T a ) = L (T ) − { x j s } , contrary to ( C1 ); if xy −
0 

∈ E(G ) , then T b = T − { y −
0 

y 0 , y 0 x } + { x 0 y 0 , xy −
0 
} is a spanning tree with L (T b ) =

L (T ) − { x 0 } , contrary to ( C1 ). �

By Claim 3.19 , we have deg T (y 0 ) = r − 2 . Let T f be a connected component T − z + 
j 

such that z j ∈ V (T f ) . Then by

Claim 3.17 , B (T ) − { y 0 } = B (T f ) . Denote B ∗ = B (T f ) − { z j } . Then T ∗ = T − { y 0 r + j 1 
, . . . , y 0 r 

+ 
j r−3 

, z j z 
+ 
j 
} + { x j 1 z j , . . . , x j r−3 

z j , x 0 y 0 }
is a spanning tree with | L (T ∗) | = | L (T ) | . Assume that d T (x 0 , z j ) = a and d T (z + 

j 
, y 0 ) = b. Note that deg T ∗ (z) = deg T (z) ,

d T ∗ (z + 
j 
, z) = d T (x 0 , z) + b + 1 for any z ∈ B ∗ and deg T ∗ (y 0 ) = 2 , deg T (y 0 ) = r − 2 , d T ∗ (z + 

j 
, y 0 ) = b, d T (x 0 , y 0 ) = a + b + 1 and

deg T ∗ (z j ) = deg T (z j ) + r − 4 , d T ∗ (z + 
j 
, z j ) = a + b + 1 . Hence, 

f (T ∗, z + 
j 
) − f (T , x 0 ) = 

∑ 

z∈ I(T ∗) 

(deg T ∗ (z) − 2) d T ∗ (z + 
j 
, z) − ∑ 

z∈ I(T ) 

(deg T (z) − 2) d T (x 0 , z) 

= { ∑ 

z∈ B ∗
(deg T ∗ (z) − 2) d T ∗ (z + 

j 
, z) + 

∑ 

z∈{ z j ,y 0 } 
(deg T ∗ (z) − 2) d T ∗ (z + 

j 
, z) } 

−{ ∑ 

z∈ B ∗
(deg T (z) − 2) d T (x 0 , z) + 

∑ 

z∈{ z j ,y 0 } 
(deg T (z) − 2) d T (x 0 , z) } 

= 

∑ 

z∈ B ∗
(deg T (z) − 2)(b + 1) + (deg T (z j ) + r − 4 − 2)(a + b + 1) 

−{ (r − 2 − 2)(a + b + 1) + (deg T (z j ) − 2) a } 
= 

∑ 

z∈ B ∗
(deg T (z) − 2)(b + 1) + (deg T (z j ) − 2)(b + 1) 

= 

∑ 

z∈ B ∗∪{ z j } 
(deg T (z) − 2)(b + 1) 

This together with b + 1 > 0 and ( C2 ) implies that 
∑ 

z∈ B ∗∪{ z j } 
(deg T (z) − 2) ≤ 0 . Thus deg T (z) = 2 for z ∈ B ∗ ∪ { z j } . By

Claim 3.17 , we have B (T ) = { y 0 } . In this subcase, k = r − 3 and thus, p = 

k 
r−3 = 1 , contrary to Claim 3.8 . 

By Claims 3.15, 3.16 and 3.18, we have α(G ) ≥ | U 

∗| + 1 ≥ k + 1 + � k 
r−3 � + 1 , contrary to Claim 3.8 . This completes the

proof of Case 2. 
9 
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4. Proof of Theorem 1.11 

We define (G 1 , G 2 , x ) a separation of a connected graph G if G can be decomposed into two nonempty connected sub-

graphs G 1 and G 2 with V (G 1 ) ∩ V (G 2 ) = { x } . We call a path P an x -path if P has an end vertex x . An (x, Y ) -path is a path

starting at x and ending at a vertex of Y , where the internal vertices are not in { x } ∪ Y . An (x, Y, t ) -fan is a set of t internally

disjoint (x, Y ) -paths with distinct terminal vertices in Y . 

Lemma 4.1. Let G be a connected K 1 , 4 -free graph and (G 1 , G 2 , x ) be a separation of G . If G i is a block and α(G i ) ≤ 3 , then G i 

has a Hamiltonian x -path for i = 1 , 2 . 

Proof. For convenience, we can only take G 1 into consideration. Assume that G 1 has no Hamiltonian x -path. Choose an

x -path P in G 1 such that 

( C4 ) P is as long as possible. 

Suppose that x and y are the end vertices of P . Obviously, N G 1 
(y ) ⊆ V (P ) as ( C4 ) and G 1 has no x -claw as G being K 1 , 4 -free.

We set a direction from x to y in P . Since P is not a hamiltionian x -path and G 1 is 2-connected, there exists a (z, P, 2) -fan

such that zQ 1 u 1 and zQ 2 u 2 are two disjoint (z, P ) paths, where z ∈ V (G 1 − P ) and u 1 , u 2 ∈ V (P ) . Let y 0 be a neighbour of y

in G 1 such that d P (y, y 0 ) = max 
v ∈ N G 1 (y ) 

d P (y, v ) . Obviously, y � = u 2 . 

By the choice of ( C4 ) and y 0 , it is easy for us to check the following claim. �

Claim 4.2. 

(1) d(u 1 , u 2 ) ≥ 2 ; 

(2) { z, u 1 + , u 2 + } and { z, u 1 + , y } are two independent sets; 

(3) if u 1 
− exists, then { z, u 1 −, u 2 

−} is also an independent set; 

(4) u 1 
−, u 1 

+ , u 2 − / ∈ N G 1 
(y ) . 

Next, we will consider two assumptions: 

We first assume that x = u 1 . By Claim 4.2 , { x + , z, y } is independent. Since G 1 has no x -claw, we have x / ∈ N G 1 
(y ) . Note

that y 0 � = x + , u 2 − and δ(G ) ≥ 2 . 

If y 0 ∈ V (x ++ P u 2 −−) , then { y + 
0 
, z, x + , u 2 + } is an independent set. In fact, we set 

P ′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

xP y 0 y 
← 

P y + 
0 

z if zy + 
0 

∈ E ( G 1 ) ;
xQ 1 zQ 2 u 2 Py y 0 

← 

P x + y + 
0 

P u 2 
− if x + y + 

0 
∈ E ( G 1 ) ;

xP y 0 y 
← 

P u 

+ 
2 

y + 
0 

P u 2 Q 2 z if u 2 
+ y + 

0 
∈ E ( G 1 ) . 

Then P ′ is an x -path in G 1 with | V (P ′ ) | > | V (P ) | , which contradicts ( C4 ). By Claim 4.2 (1), { z, x + , u 2 + } is independent. Hence,

{ y + 
0 
, z, x + , u 2 + } is independent in G 1 , a contradiction to α(G 1 ) ≤ 3 . 

If y 0 ∈ V (u 2 P y ) , then we can utilize the similar discussion to Claim 3.5 in Theorem 1.8 to find z 0 ∈ V (y 0 P y ) such that

z ∈ N G 1 
(y ) for all z ∈ V (y 0 P z 0 ) and y z 0 

+ / ∈ E(G 1 ) . Set 

P ′′ = 

{ 

xQ 1 zQ 2 u 2 P z 0 y 
← 

P z 0 
+ x + P u 2 

− if x + z 0 + ∈ E ( G 1 ) ;
xP z 0 y 

← 

P z 0 
+ z if z z 0 

+ ∈ E ( G 1 ) . 

Then P ′′ is an x -path in G 1 with | V (P ′′ ) | > | V (P ) | , which contradicts ( C4 ). Note that { x + , z, y } is independent. Hence,

{ x + , z, z 0 + , y } is independent in G 1 , a contradiction to α(G 1 ) ≤ 3 . 

We now assume that x � = u 1 . By Claim 4.2 (4), u 1 
−, u 1 

+ , u 2 − / ∈ N G 1 
(y ) . 

If y 0 ∈ V (xP u 1 
−−) , then { y + 

0 
, z, u 1 

+ , u 2 + } is an independent set. In fact, if y + 
0 

u 1 
+ ∈ E(G 1 ) , then P ′ = xP y 0 y 

← −
P u 1 

+ y + 
0 

P u 1 Q 1 z

is an x -path in G 1 , which contradicts ( C4 ). By the similar discussion as above, we have y + 
0 

u 2 
+ , y + 

0 
z / ∈ E(G 1 ) . Note that

{ z, u 1 + , u 2 + } is an independent set by Claim 4.2 (1). Hence, { y + 
0 
, z, u 1 

+ , u 2 + } is an independent set, a contradiction to

α(G 1 ) ≤ 3 . 

If y 0 ∈ V (u 1 P u 2 
−−) , then we can easily see that { y + 

0 
, z, u 1 

−, u 2 
+ } is an independent set, a contradiction to α(G 1 ) ≤ 3 ; if

y 0 ∈ V (u 2 P y ) , then it is easy to check that { y + 
0 
, z, u 1 

−, u 2 
−} is an independent set, a contradiction to α(G 1 ) ≤ 3 . 

Hence, G 1 has a Hamiltonian x -path. With the similar argument in G 1 , G 2 also has a Hamiltonian x -path. Then

Lemma 4.1 holds. 

Proof of Theorem 1.11.. If G is 2-connected, then the result holds by Corollary 1.10. If G is not 2-connected, suppose that 

α(B ) ≥ 3 for every block B in G and G is a minimal counterexample to Theorem 1.11 . Let x be a cut vertex in G and (G 1 , G 2 , x )

be a separation of G . Obviously, α(G 1 ) + α(G 2 ) − 1 ≤ α(G ) ≤ α(G 1 ) + α(G 2 ) and α(G i ) ≥ 3 . 

Case 1 α(G 1 ) > 5 and α(G 2 ) > 5 . 

Let k i be an integer such that k i = � α(G i ) −4 
2 � for i = 1 , 2 . Then k i ≥ 1 . 

On one hand, 2 k + 5 ≥ α(G ) ≥ α(G 1 ) + α(G 2 ) − 1 ≥ 2(k 1 + k 2 + 1) + 5 . Hence, k 1 + k 2 + 1 ≤ k . G i satisfies the condition

in Theorem 1.11 and the independence number of every block in G is also no less than 3. On the other hand, since G
i 

10 



G. Chen, Y. Chen, Z. Hu et al. Applied Mathematics and Computation 445 (2023) 127842 

 

 

 

 

 

 

 

 

is a minimal counterexample to Theorem 1.11 , G i has a spanning tree with at most k i branch vertices. Then | B (T 1 ∪ T 2 ) | ≤
| B (T 1 ) ∪ B (T 2 ) ∪ { x }| ≤ | B (T 1 ) | + | B (T 2 ) | + 1 ≤ k 1 + k 2 + 1 . 

Hence, T 1 ∪ T 2 is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample. 

Case 2 α(G 1 ) > 5 and 3 ≤ α(G 2 ) ≤ 5 . 

Let k 1 be an integer such that k 1 = � α(G 1 ) −4 
2 � and k 2 = 0 . Then k 1 ≥ 1 and α(G 2 ) ≤ 5 = 2 k 2 + 5 . 

On one hand, 2 k + 5 ≥ α(G ) ≥ α(G 1 ) + α(G 2 ) − 1 ≥ 2 k 1 + 4 + 3 − 1 . Hence, k 1 + 1 ≤ k . G i satisfies the condition in

Theorem 1.11 and the independence number of every block in G i is also no less than 3. On the other hand, since G is

a minimal counterexample to Theorem 1.11 , G i has a spanning tree with at most k i branch vertices. Then | B (T 1 ∪ T 2 ) | ≤
| B (T 1 ) ∪ B (T 2 ) ∪ { x }| ≤ | B (T 1 ) | + | B (T 2 ) | + 1 ≤ k 1 + k 2 + 1 = k 1 + 1 . 

Therefore, T 1 ∪ T 2 is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample. 

Case 3 3 ≤ α(G 1 ) ≤ 5 and 3 ≤ α(G 2 ) ≤ 5 . 

Let k i = 0 . Then α(G i ) ≤ 5 = 2 k i + 5 . 

On one hand, α(G ) ≥ α(G 1 ) + α(G 2 ) − 1 ≥ 5 . G i satisfies the condition in Theorem 1.11 and the independence number of

every block in G i is also no less than 3. On the other hand, since G is a minimal counterexample to Theorem 1.11 , G i has a

spanning tree with at most k i branch vertices. Then | B (T 1 ∪ T 2 ) | ≤ | B (T 1 ) ∪ B (T 2 ) ∪ { x }| ≤ | B (T 1 ) | + | B (T 2 ) | + 1 ≤ k 1 + k 2 + 1 =
1 . In fact, α(G ) ≤ 5 . Otherwise, 2 k + 5 ≥ α(G ) ≥ 6 . That is, k ≥ 1 ≥ | B (T 1 ∪ T 2 ) | . Then T 1 ∪ T 2 is a spanning tree of G with at

most k branch vertices, a contradiction with G being a counterexample. 

Therefore, α(G ) = 5 and α(G 1 ) = α(G 2 ) = 3 . By Lemma 4.1 , G i has a Hamiltonian x -path P i for i = 1 , 2 . Then P 1 ∪ P 2 is a

Hamiltonian path in G , a contradiction with G being a counterexample. Hence Theorem 1.11 holds. �
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