Spanning trees with at most k leaves in 2-connected $K_{1, r}$-free graphs

Guantao Chen ${ }^{\mathrm{a}, 1}$, Yuan Chen ${ }^{\mathrm{b}, 2}$, Zhiquan $\mathrm{Hu}^{\mathrm{c}, 3}$, Shunzhe Zhang ${ }^{\mathrm{d}, 4, *}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States
${ }^{\mathrm{b}}$ Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, PR China
${ }^{\text {c }}$ School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079,
PR China
${ }^{\mathrm{d}}$ Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, PR China

A R T I C L E I N F O

Article history:

Received 30 May 2022
Revised 18 November 2022
Accepted 3 January 2023

MSC:

05C05
05C07
05 C 69

Keywords:

Spanning tree
Leaf
Independence number
$K_{1, r}$-free

Abstract

A vertex with degree one and a vertex with degree at least three are called a leaf and a branch vertex in a tree, respectively. In this paper, we obtain that every 2 -connected $K_{1, r}$-free graph G contains a spanning tree with at most k leaves if $\alpha(G) \leq k+\left\lceil\frac{k+1}{r-3}\right\rceil-$ $\left\lfloor\frac{1}{|r-k-3|+1}\right\rfloor$, where $k \geq 2$ and $r \geq 4$. The upper bound is best possible. Furthermore, we prove that if a connected $K_{1,4}$-free graph G satisfies that $\alpha(G) \leq 2 k+5$, then G contains either a spanning tree with at most k branch vertices or a block B with $\alpha(B) \leq 2$. A related conjecture for 2-connected claw-free graphs is also posed.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we only consider simple and undirected graphs. Let G be a graph and $v \in V(G)$. We denote the degree of v by $\operatorname{deg}_{G}(v)$ and the vertices which are adjacent to v by $N_{G}(v)$. For a set $S \subseteq V(G)$, the subgraph induced by S and $V(G) \backslash S$ are denoted by $G[S]$ and $G-S$, respectively. We denote the number of vertices in S by $|S|$.

A subset X is independent in G if $G[X]$ has no edge. The independence number of G is denoted by $\alpha(G)$, which means the maximum number of vertices in an independent set of G. Define $\sigma_{k}(G)=\min \left\{\sum_{x \in X} \operatorname{deg}_{G}(x) \mid X\right.$ is independent in G and $|X|=k\}$. G is called $K_{1, r}$-free if $K_{1, r}$ is not an induced subgraph of G. We write claw-free graph for the $K_{1,3}$-free graph. The center of a claw refers to the vertex of degree 3 in $K_{1,3}$ and x-claw refers to a claw with center x.

[^0]We call v a leaf of tree T if $\operatorname{deg}_{T}(v)=1$ and denote $L(T)$ the set of leaves of T. A vertex v with $\operatorname{deg}_{T}(v) \geq 3$ is called a branch vertex of tree T and define $B(T)$ the set of branch vertices of T.

There are some well-known results such as Ore's Theorem [8] and Chvátal-Erdős's Theorem [4] related to conditions of degree sum and independence number ensuring a Hamiltonian path in G, respectively. Note that a Hamiltonian path is a spanning tree with two leaves. With this viewpoint, researchers gave several results concerning about such two types of conditions to guarantee the existence of spanning tree with bounded leaves(see the survey paper [9]).

The following two results generalize Ore's Theorem [8] and Chvátal-Erdős's Theorem [4], respectively.
Theorem 1.1 (Broerma and Tuinstra [1]). Let $k \geq 2$. If G is a connected graph of order n such that $\sigma_{2}(G) \geq n-k+1$, then G has a spanning tree with at most k leaves.

Theorem 1.2 (Win [10]). Let $k \geq 2$. If G is an m-connected graph such that $\alpha(G) \leq m+k-1$, then G has a spanning tree with at most k leaves.

Since there are many researches on Hamiltonian path problem in $K_{1, r}$-free graphs, it is also natural for us to search for conditions for $K_{1, r}$-free graphs to ensure the existence of spanning trees with bounded leaves. Here are some related results on $K_{1, r}$-free graphs.

Theorem 1.3 (Kano et al. [6]). Let $k \geq 2$. If G is a connected claw-free graph of order n such that $\sigma_{k+1}(G) \geq n-k$, then G has a spanning tree with at most k leaves.

Theorem 1.4 (Kyaw [7]). Let G be a connected $K_{1,4}$-free graph of order n.
(i) If $\sigma_{3}(G) \geq n$, then G has a Hamiltonian path.
(ii) If $\sigma_{k+1}(\bar{G}) \geq n-\frac{k}{2}$ for some integer $k \geq 3$, then G has a spanning tree with at most k leaves.

Theorem 1.5 (Chen et al. [2]). Let $m \geq 2$. If G is an m-connected $K_{1,4}$-free graph of order n such that $\sigma_{m+3}(G) \geq n+2 m-2$, then G has a spanning tree with at most 3 leaves.

Theorem 1.6 (Chen et al. [3]). If G is a connected $K_{1,5}$-free graph of order n such that $\sigma_{5}(G) \geq n-1$, then G has a spanning tree with at most 4 leaves.

Theorem 1.7 (Hu and Sun [5]). If G is a connected $K_{1,5}$-free graph of order n such that $\sigma_{6}(G) \geq n-1$, then G has a spanning tree with at most 5 leaves.

In this paper, we consider $\alpha(G)$ for a 2-connected $K_{1, r}$-free graph with $r \geq 4$ to guarantee the existence of a spanning tree with bounded leaves.

Theorem 1.8. Let $k \geq 2$ and $r \geq 4$. If G is a 2-connected $K_{1, r}$-free graph such that $\alpha(G) \leq k+\left\lceil\frac{k+1}{r-3}\right\rceil-\left\lfloor\frac{1}{|r-k-3|+1}\right\rfloor$, then G has a spanning tree with at most k leaves.

By taking $r=4$ in Theorem 1.8, we have the following corollary.
Corollary 1.9. Let $k \geq 2$. If G is a 2-connected $K_{1,4}$-free graph such that $\alpha(G) \leq 2 k+1$, then G has a spanning tree with at most k leaves.

Note that a tree with at most k leaves contains at most $k-2$ branch vertices. We can easily obtain the following corollary.
Corollary 1.10. Let $k \geq 0$. If G is a 2-connected $K_{1,4}$-free graph such that $\alpha(G) \leq 2 k+5$, then G has a spanning tree with at most k branch vertices.

With the same independence number condition of Corollary 1.10, we further provide the following result for connected $K_{1,4}$-free graphs.

Theorem 1.11. Let $k \geq 0$. If G is a connected $K_{1,4}$-free graph such that $\alpha(G) \leq 2 k+5$, then one of the following two statements holds:
(i) G has a spanning tree with at most k branch vertices;
(ii) there exists a block B in G with $\alpha(B) \leq 2$.

We provide the following conjecture for connected claw-free graphs to end this section.
Conjecture 1.12. Let $k \geq 2$. If G is a 2-connected claw-free graph such that $\alpha(G) \leq 2 k+2$, then G has a spanning tree with at most k leaves.

In next section, we show that the upper bounds of $\alpha(G)$ are sharp in Theorem 1.8 and Conjecture 1.12 if it is true. We prove Theorem 1.8 and Theorem 1.11 in Sections 3 and 4, respectively.

Fig. 1. Graph G_{1}.

Fig. 2. Graph G_{3}.

2. Sharpness of Theorem 1.8 and Conjecture 1.12

First, we show that the upper bound of $\alpha(G)$ in Theorem 1.8 is sharp. This is shown in the following examples G_{1} and G_{2}.

Denote $t=\left\lfloor\frac{k+1}{r-3}\right\rfloor$ and $h=k+1-t(r-3)$.
Case 1. $r \neq k+3$.
In this case, $\left\lfloor\frac{1}{|r-k-3|+1}\right\rfloor=0$.
If $h \neq 0$, we construct a graph G_{1} from a complete graph $K_{2 t+2}$ with $V\left(K_{2 t+2}\right)=\left\{x_{0}, x_{0}^{\prime}, x_{1}, x_{1}^{\prime}, \ldots, x_{t}, x_{t}^{\prime}\right\}$ and $(r-2) t+$ $h+1$ complete graphs $K_{m}(m \geq 3)$ by identifying $r-2$ complete graphs K_{m} with every pair of $\left\{x_{i}, x_{i}^{\prime}\right\}$ for $1 \leq i \leq t$ and by identifying $h+1$ complete graphs K_{m} with $\left\{x_{0}, x_{0}^{\prime}\right\}$ (see Fig. 1). Then G_{1} is 2-connected $K_{1, r}$-free and $\alpha\left(G_{1}\right)=t(r-2)+$ $h+1=t(r-2)+k+1-t(r-3)+1=k+1+t+1=k+1+\left\lceil\frac{k+1}{r-3}\right\rceil$. However, for every spanning tree T_{1} of G_{1}, we have $\left|L\left(T_{1}\right)\right| \geq t(r-3)+h=k+1$. Case 2. $r=k+3$.

In this case, $\left\lceil\frac{k+1}{r-3}\right\rceil=2$ and $\left\lfloor\frac{1}{|r-k-3|+1}\right\rfloor=1$.
We construct a graph G_{2} from a pair of vertex set $\left\{x_{0}, x_{0}^{\prime}\right\}$ and $r-1$ complete graphs K_{m} ($m \geq 3$) by identifying $r-1$ complete graphs K_{m} with $\left\{x_{0}, x_{0}^{\prime}\right\}$. Then G_{2} is 2-connected $K_{1, r}$-free and $\alpha\left(G_{2}\right)=r-1=k+2$, but G_{2} has no spanning tree with at most k leaves.

Next, we show that the upper bound $2 k+2$ in Conjecture 1.12 is sharp if it is true. For $0 \leq i \leq k$, let T_{i} and T_{i}^{\prime} be two triangles with $V\left(T_{i}\right)=\left\{x_{i}, y_{i}, z_{i}\right\}$ and $V\left(T_{i}^{\prime}\right)=\left\{x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}\right\}$, respectively. Consider a graph G_{3} constructed from a complete graph $K_{2 k+2}$ with $V\left(K_{2 k+2}\right)=\left\{x_{0}, x_{0}^{\prime}, x_{1}, x_{1}^{\prime}, \ldots, x_{k}, x_{k}^{\prime}\right\}$ and $2 k+2$ complete graphs K_{m} ($m \geq 3$) by identifying $2 k+2$ complete graphs K_{m} with every pair of $\left\{y_{i}, y_{i}^{\prime}\right\}$ and $\left\{z_{i}, z_{i}^{\prime}\right\}$ for $0 \leq i \leq k$, respectively (see Fig. 2). Then G_{3} is 2-connected claw-free with $\alpha\left(G_{3}\right)=2 k+3$, but G_{3} has no spanning tree with at most k leaves.

3. Proof of Theorem 1.8

We begin with some additional notations. Let x and y be two vertices of G, we denote the distance between x and y in G by $d_{G}(x, y)$. Let u and v be two vertices in a spanning tree T of G, the unique path from u to v in T is denoted by $T[u, v]$. We write $T[u, v]-\{u, v\}, T[u, v]-\{u\}, T[u, v]-\{v\}$ by $T(u, v), T(u, v]$ and $T[u, v)$, respectively. Set $I(T)=V(T)-L(T)$ and $f(T)=\max _{v \in L(T)} f(T, v)$, where $f(T, v)=\sum_{z \in I(T)}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}(v, z)$. Note that $\left(\operatorname{deg}_{T}(z)-2\right) d_{T}(v, z)=0$ if $\operatorname{deg}_{T}(z)=2$. Set $g(T)=\sum_{x \in L(T)} g(T, x)$, where $g(T, x)=\max \left\{d_{T}(x, y) \mid y \in N_{G}(x)\right\}$.
Proof of Theorem 1.8.. Suppose that G is a 2-connected $K_{1, r}$-free graph and every spanning tree has at least $k+1$ leaves in G. We choose a spanning tree T of G satisfying that
(C1) $|L(T)|$ is as small as possible;
(C2) Subject to (C1), $f(T)$ is as large as possible;
(C3) Subject to (C1) and (C2), $g(T)$ is as large as possible.
Assume that $L(T)=\left\{x_{0}, x_{1}, \ldots, x_{t}\right\}$ and $f(T)=f\left(T, x_{0}\right)$. Then $t \geq k . T$ is considered as a rooted tree and x_{0} is the root of T. For $1 \leq i \leq t, r_{i}$ is the last branch vertex of T on $T\left[x_{0}, x_{i}\right]$ and r_{i}^{+}is the successor of r_{i} on $T\left[x_{0}, x_{i}\right]$. For $v \in V(T)-\left\{x_{0}\right\}$, the predecessor of v is denoted by v^{-}on $T\left[x_{0}, v\right]$.

Claim 3.1. $L(T)$ is independent in G.
Proof. Assume that $x_{i} x_{j} \in E(G)$ for some i and j with $0 \leq i \neq j \leq t$. Then $T^{*}=T-\left\{r_{i} r_{i}^{+}\right\}+\left\{x_{i} x_{j}\right\}$ is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{i}, x_{j}\right\}\right) \cup\left\{r_{i}^{+}\right\}$, contradicting (C1). This proves Claim 3.1.

Remark 3.1. From the proof of Claim 3.1, we know that for every spanning tree T^{*} of G with $\left|L\left(T^{*}\right)\right| \leq|L(T)|$, then $L\left(T^{*}\right)$ is independent in G with $\left|L\left(T^{*}\right)\right|=|L(T)|$.
Claim 3.2. For $1 \leq i \leq t$, there is no neighbour of x_{0} on $T\left(r_{i}, x_{i}\right)$.
Proof. Assume that $y \in N_{G}\left(x_{0}\right)$ with $y \in V\left(T\left(r_{i}, x_{i}\right)\right)$ for some $1 \leq i \leq t$. Then $T^{*}=T-\left\{y y^{-}\right\}+\left\{x_{0} y\right\}$ is a spanning tree of G. If $y^{-}=r_{i}$, then $\left|L\left(T^{*}\right)\right|<|L(T)|$, contrary to ($C 1$); if $y^{-} \neq r_{i}$, then T^{*} satisfies (C1). Note that $B\left(T^{*}\right)=B(T)$. Then $d_{T^{*}}\left(z, x_{i}\right)=$ $d_{T^{*}}\left(x_{0}, x_{i}\right)+d_{T}\left(z, x_{0}\right)$ for any $z \in B(T)$. Since $d_{T^{*}}\left(x_{0}, x_{i}\right)>1$, we have $d_{T^{*}}\left(z, x_{i}\right)>d_{T}\left(z, x_{0}\right)$. Thus $f\left(T^{*}, x_{i}\right)>f\left(T, x_{0}\right)$. Then we have $f\left(T^{*}\right)>f(T)$, contrary to (C2).

For $1 \leq i_{1}<\ldots<i_{l} \leq t$, denote by $r_{i_{1} \ldots i_{l}}$ the last common vertex of the paths $T\left[x_{0}, x_{i_{1}}\right], \ldots, T\left[x_{0}, x_{i_{l}}\right]$. We denote the successor of $r_{i j}$ on $T\left[r_{i j}, x_{i}\right]$ and $T\left[r_{i j}, x_{j}\right]$ by $r_{i j}^{+}$and $r_{j i}^{+}$, respectively. Denote the predecessor of $r_{i j}$ on $T\left[x_{0}, r_{i j}\right]$ by $r_{i j}^{-}$. The predecessor of y on $T\left(r_{i j}, x_{j}\right)$ is denoted by y^{-}.

Claim 3.3. $N_{G}\left(x_{i}\right) \subseteq V\left(T\left(x_{0}, x_{i}\right)\right)$ for $1 \leq i \leq t$.
Proof. Assume that there exists $x_{j} \in L(T)-\left\{x_{0}, x_{i}\right\}$ satisfying that x_{i} has a neighbour y on $T\left(r_{i j}, x_{j}\right)$. Obviously, $r_{i} \in$ $V\left(T\left[r_{i j}, x_{i}\right)\right)$ and $r_{j} \in V\left(T\left[r_{i j}, x_{j}\right)\right)$.

Set $T^{*}=T-\left\{r_{i} r_{i}^{+}\right\}+\left\{x_{i} y\right\}$. Then T^{*} is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{i}\right\}\right) \cup\left\{r_{i}^{+}\right\}$. Then $I\left(T^{*}\right)=\left(I(T)-\left\{r_{i}^{+}\right\}\right) \cup$ $\left\{x_{i}\right\}$. Note that $d_{T^{*}}\left(x_{0}, r_{i}\right)=d_{T}\left(x_{0}, r_{i}\right), \operatorname{deg}_{T^{*}}\left(r_{i}\right)=\operatorname{deg}_{T}\left(r_{i}\right)-1, d_{T^{*}}\left(x_{0}, y\right)=d_{T}\left(x_{0}, y\right)$ and $\operatorname{deg}_{T^{*}}(y)=\operatorname{deg}_{T}(y)+1$. Note that $\operatorname{deg}_{T^{*}}\left(x_{i}\right)=2, \operatorname{deg}_{T}\left(r_{i}^{+}\right)=2$ and $\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right)=\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(x_{0}, z\right)$ for all $z \in I\left(T^{*}\right) \cap I(T)-\left\{r_{i}, y\right\}$. Hence,

$$
\begin{aligned}
f\left(T^{*}, x_{0}\right)-f\left(T, x_{0}\right) & =\sum_{z \in I\left(T^{*}\right)}\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(x_{0}, z\right)-\sum_{z \in I(T)}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in I\left(T^{*}\right) \backslash\left\{x_{i}\right\}}\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(x_{0}, z\right)-\sum_{z \in I(T) \backslash\left\{r_{i}^{+}\right\}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in\left\{r_{i}, y\right\}}\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(x_{0}, z\right)-\sum_{z \in\left\{r_{i}, y\right\}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in\left\{r_{i}, y\right\}}\left(\operatorname{deg}_{T^{*}}(z)-\operatorname{deg}_{T}(z)\right) d_{T}\left(x_{0}, z\right) \\
& =d_{T}\left(x_{0}, y\right)-d_{T}\left(x_{0}, r_{i}\right) .
\end{aligned}
$$

This together with (C2) implies that $d_{T}\left(x_{0}, r_{i}\right) \geq d_{T}\left(x_{0}, y\right)$.
If $y \in V\left(T\left(r_{i j}, r_{j}\right]\right)$, we set $T^{\prime}=T-\left\{y y^{-}\right\}+\left\{x_{i} y\right\}$. Then T^{\prime} is a spanning tree and $I\left(T^{\prime}\right)=\left(I(T)-\left\{y^{-}\right\}\right) \cup\left\{x_{i}\right\}$. If $\operatorname{deg}_{T}\left(y^{-}\right) \geq$ 3, we have $L\left(T^{\prime}\right)=L(T)-\left\{x_{i}\right\}$, contradicting $(C 1)$. So $\operatorname{deg}_{T}\left(y^{-}\right)=2$. Note that $\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right)=\left(\operatorname{deg}_{T^{\prime}}(z)-2\right) d_{T^{\prime}}\left(x_{0}, z\right)$ for all $z \in I\left(T^{*}\right) \cap I(T)-V\left(T\left[y, r_{j}\right]\right)$. We have

$$
\begin{aligned}
f\left(T^{\prime}, x_{0}\right)-f\left(T, x_{0}\right) & =\sum_{z \in I\left(T^{\prime}\right)}\left(\operatorname{deg}_{T^{\prime}}(z)-2\right) d_{T^{\prime}}\left(x_{0}, z\right)-\sum_{z \in I(T)}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in I\left(T^{\prime}\right) \backslash\left\{x_{i}\right\}}\left(\operatorname{deg}_{T^{\prime}}(z)-2\right) d_{T^{\prime}}\left(x_{0}, z\right)-\sum_{z \in I(T) \backslash\left\{y^{-}\right\}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in V\left(T\left[y, r_{j}\right]\right)}\left(\operatorname{deg}_{T^{\prime}}(z)-2\right) d_{T^{\prime}}\left(x_{0}, z\right)-\sum_{z \in V\left(T\left[y, r_{j}\right]\right)}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in V\left(T\left[y, r_{j}\right]\right)}\left(\operatorname{deg}_{T}(z)-2\right)\left(d_{T^{\prime}}\left(x_{0}, z\right)-d_{T}\left(x_{0}, z\right)\right) \\
& \geq \sum_{z \in V\left(T\left[y, r_{j}\right]\right)}\left(\operatorname{deg}_{T}(z)-2\right)\left[d_{T}\left(x_{0}, r_{i}\right)-d_{T}\left(x_{0}, y\right)+2\right] .
\end{aligned}
$$

This together with (1) implies that $f\left(T^{\prime}, x_{0}\right)-f\left(T, x_{0}\right) \geq 2 \sum_{z \in V\left(T\left[y, r_{j}\right]\right)}\left(\operatorname{deg}_{T}(z)-2\right)$. Noting that $r_{j} \in V\left(T\left[y, r_{j}\right]\right)$, we get $f\left(T^{\prime}\right)-f(T) \geq f\left(T^{\prime}, x_{0}\right)-f\left(T, x_{0}\right) \geq 2\left[\operatorname{deg}_{T}\left(r_{j}\right)-2\right] \geq 2$, contrary to (C2).

If $y \in V\left(T\left(r_{j}, x_{j}\right)\right)$, we set $T^{\prime \prime}=T-\left\{r_{j} r_{j}^{+}\right\}+\left\{x_{i} y\right\}$. Then $T^{\prime \prime}$ is a spanning tree and $I\left(T^{\prime \prime}\right)=\left(I(T)-\left\{r_{j}^{+}\right\}\right) \cup\left\{x_{i}\right\}$. If $y^{-}=$ r_{j}, then $L\left(T^{\prime \prime}\right)=L(T)-\left\{x_{i}\right\}$, contrary to (C1). Thus, $y^{-} \neq r_{j}$. Note that $\operatorname{deg}_{T^{\prime \prime}}\left(r_{j}\right)=\operatorname{deg}_{T}\left(r_{j}\right)-1, d_{T^{\prime \prime}}\left(x_{0}, r_{j}\right)=d_{T}\left(x_{0}, r_{j}\right)$,
$\operatorname{deg}_{T}(y)=2, \operatorname{deg}_{T^{\prime \prime}}(y)=\operatorname{deg}_{T}(y)+1=3$. From (1), we have $d_{T^{\prime \prime}}\left(x_{0}, y\right) \geq d_{T}\left(x_{0}, r_{i}\right)+2 \geq d_{T}\left(x_{0}, y\right)+2$. By the similar discussion to that in the proof of (1),

$$
\begin{aligned}
f\left(T^{\prime \prime}, x_{0}\right)-f\left(T, x_{0}\right) & =\sum_{z \in I\left(T^{\prime \prime}\right)}\left(\operatorname{deg}_{T^{\prime \prime}}(z)-2\right) d_{T^{\prime \prime}}\left(x_{0}, z\right)-\sum_{z \in I(T)}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in I\left(T^{\prime \prime}\right) \backslash\left\{x_{i}\right\}}\left(\operatorname{deg}_{T^{\prime} \prime}(z)-2\right) d_{T^{\prime}}\left(x_{0}, z\right)-\sum_{z \in I(T) \backslash\left\{r_{j}^{+}\right\}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\sum_{z \in\left\{r_{j}, y\right\}}\left(\operatorname{deg}_{T^{\prime \prime}}(z)-2\right) d_{T^{\prime \prime}}\left(x_{0}, z\right)-\sum_{z \in\left\{r_{j}, y\right\}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\left(\operatorname{deg}_{T^{\prime \prime}}\left(r_{j}\right)-\operatorname{deg}_{T}\left(r_{j}\right)\right) d_{T}\left(x_{0}, r_{j}\right)+d_{T^{\prime \prime}}\left(x_{0}, y\right) \\
& =d_{T^{\prime \prime}}\left(x_{0}, y\right)-d_{T}\left(x_{0}, r_{j}\right) \\
& >d_{T^{\prime \prime}}\left(x_{0}, y\right)-d_{T}\left(x_{0}, y\right) . \\
& \geq 2 .
\end{aligned}
$$

This implies that $f\left(T^{\prime \prime}\right)-f(T) \geq f\left(T^{\prime \prime}, x_{0}\right)-f\left(T, x_{0}\right)>2$, also contradicting (C2). This proves Claim 3.3.
Claim 3.4. Let $1 \leq i \neq j \leq t$. Then $r_{i j}^{-} \notin N_{G}\left(x_{i}\right)$ and $r_{i j}^{+} \notin N_{G}\left(x_{0}\right)$.
Proof. Suppose that Claim 3.4 is false. Set

$$
T^{*}= \begin{cases}T-\left\{r_{i j}^{-} r_{i j}\right\}+\left\{x_{i} r_{i j}^{-}\right\}, & \text {if } x_{i} r_{i j}^{-} \in E(G) \\ T-\left\{r_{i j} r_{i j}^{+}\right\}+\left\{x_{0} r_{i j}^{+}\right\}, & \text {if } x_{0} r_{i j}^{+} \in E(G)\end{cases}
$$

Then T^{*} is a spanning tree with $\left|L\left(T^{*}\right)\right|<|L(T)|$, contrary to (C1).
For $0 \leq i \leq t$, let y_{i} be the neighbour of x_{i} such that $d_{T}\left(x_{i}, y_{i}\right)=g\left(T, x_{i}\right)$. According to Claim 3.3, $y_{i} \in V\left(T\left(x_{0}, x_{i}\right)\right)$ for $1 \leq i \leq$ t. We denote the successor of y_{i} on $T\left[x_{0}, x_{i}\right]$ by y_{i}^{+}. Set $I_{1}=\left\{i \in[1, t]: y_{i} \in V\left(T\left[r_{i}, x_{i}\right)\right)\right\}$ and $I_{2}=\left\{i \in[1, t]: y_{i} \in V\left(T\left(x_{0}, r_{i}\right)\right)\right\}$. Obviously, $I_{1} \cap I_{2}=\emptyset$ and $I_{1} \cup I_{2}=[1, t]$.
Claim 3.5. For $i \in I_{1}$, there exists $z_{i} \in V\left(T\left[y_{i}, x_{i}\right)\right)$ satisfying that $z_{i}^{+} \notin N_{G}\left[x_{i}\right]$ and $V\left(T\left[y_{i}, z_{i}\right]\right) \subseteq N_{G}\left(x_{i}\right)$ where $N_{G}\left[x_{i}\right]=N_{G}\left(x_{i}\right) \cup$ $\left\{x_{i}\right\}$ and z_{i}^{+}is the successor of z_{i} on $T\left[x_{0}, x_{i}\right]$.

Proof. Suppose that Claim 3.5 is false. Then there is an integer $i \in I_{1}$ such that $N_{G}\left[x_{i}\right] \cap V\left(T\left[r_{i}, x_{i}\right]\right)=V\left(T\left[y_{i}, x_{i}\right]\right)$. Since G is 2connected, $G-y_{i}$ is connected. There is $u_{i} \in V\left(T\left(y_{i}, x_{i}\right)\right)$ such that u_{i} has a neighbour v_{i} in $T-T\left[y_{i}, x_{i}\right]$. Set $T^{*}=T-\left\{u_{i}^{-} u_{i}\right\}+$ $\left\{u_{i}^{-} x_{i}\right\}$. Then T^{*} is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{i}\right\}\right) \cup\left\{u_{i}\right\}$ that satisfies (C1) and (C2). Noting that $d_{T^{*}}\left(u_{i}, y_{i}\right)=$ $d_{T}\left(x_{i}, y_{i}\right)$, we have $d_{T^{*}}\left(u_{i}, v_{i}\right)>d_{T}\left(x_{i}, y_{i}\right)$, which implies that $g\left(T^{*}, u_{i}\right)>g\left(T, x_{i}\right)$. On the other hand, by Claims 3.2 and 3.3, we have $N_{G}\left(x_{j}\right) \cap V\left(T\left(r_{i}, x_{i}\right)\right)=\emptyset$ for $0 \leq j \neq i \leq t$. Hence, $g\left(T^{*}, x_{j}\right)=g\left(T, x_{j}\right)$ for $0 \leq j \neq i \leq t$. We have $g\left(T^{*}\right)>g(T)$, contrary to (C3).

By Claim 3.5, there exists $z_{i} \in V\left(T\left[y_{i}, x_{i}\right)\right)$ satisfying that $z_{i}^{+} \notin N_{G}\left[x_{i}\right], V\left(T\left[y_{i}, z_{i}\right]\right) \subseteq N_{G}\left(x_{i}\right)$ and let $L_{1}^{\prime}(T)=\left\{z_{i}: i \in I_{1}\right\}$. Denote $z_{j}=y_{j}$ for $j \in I_{2}$ and let $L_{2}^{\prime}(T)=\left\{z_{j}: j \in I_{2}\right\}$. For $h=1,2$, define $X^{h}=\left\{x_{i}: i \in I_{h}\right\}$ and $L_{h}(T)=\left\{z_{i}^{+}: z_{i} \in L_{h}^{\prime}(T)\right\}$.

By the choice of z_{i} for $i \in I_{1} \cup I_{2}$, we define two surjections $\theta_{h}: X^{h} \rightarrow L_{h}^{\prime}(T)$ for $h=1$, Note that $z_{i} \in V\left(T\left(y_{i}, x_{i}\right)\right)$ for $i \in I_{1}$. Since $V\left(T\left(y_{i}, x_{i}\right)\right) \cap V\left(T\left(y_{j}, x_{j}\right)\right)=\emptyset$ for $i \neq j \in I_{1}, \theta_{1}$ is a bijection. Thus $\left|L_{1}(T)\right|=\left|L_{1}^{\prime}(T)\right|=\left|I_{1}\right|$.

Claim 3.6. $\left|L_{2}(T)\right| \geq\left|L_{2}^{\prime}(T)\right| \geq\left\lceil\frac{\left|I_{2}\right|}{r-3}\right\rceil$.
Proof. Let $\theta_{2}^{-1}\left(z_{i}\right)$ be the preimage of z_{i} in X^{2} for $z_{i} \in L_{2}^{\prime}(T)$. Suppose that $\theta_{2}^{-1}\left(z_{i}\right)=\left\{x_{i_{s}}: s \geq 1\right\}$ for $i \in I_{2}$ and $z_{i}=z_{i_{1}}=\ldots=$ $z_{i_{s}}$. By Claim 3.3, we have $z_{i} \in V\left(T\left(x_{0}, x_{i_{j}}\right)\right)$ for $1 \leq j \leq s$. Hence, $z_{i} \in V\left(T\left(x_{0}, r_{i_{1} \ldots i_{s}}\right]\right)$. We claim that

$$
\begin{equation*}
\left\{z_{i}^{-}, x_{i_{1}}, \ldots, x_{i_{s}}\right\} \cup\left\{z_{i_{j}}^{+}: 1 \leq j \leq s\right\} \text { is independent in } G . \tag{*}
\end{equation*}
$$

Suppose to the contrary that $(*)$ is false. By Claim 3.1, $\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ is independent. Then one of the following cases occurs.

- $z_{i}^{-} z_{i_{j}}^{+} \in E(G)$ for some $j \in[1, s]$. If $\operatorname{deg}_{T}\left(z_{i}\right) \geq 3$, then $T^{*}=T-\left\{z_{i}^{-} z_{i}, z_{i} z_{i_{j}}^{+}\right\}+\left\{z_{i} x_{i_{j}}, z_{i}^{-} z_{i_{j}}^{+}\right\}$is a spanning tree with $L\left(T^{*}\right)=$ $L(T)-\left\{x_{i_{j}}\right\}$, contrary to (C1). Hence, $\operatorname{deg}_{T}\left(z_{i}\right)=2$. For any $h \in[1, s] \backslash\{j\}, T^{(1)}=T-\left\{z_{i}^{-} z_{i}, z_{i} z_{i_{j}}^{+}, r_{i_{h}} r_{i_{h}}^{+}\right\}+\left\{z_{i} x_{i_{j}}, z_{i}^{-} z_{i_{j}}^{+}, z_{i} x_{i_{h}}\right\}$ is a spanning tree with $L\left(T^{(1)}\right)=\left(L(T)-\left\{x_{i_{j}}, x_{i_{h}}\right\}\right) \cup\left\{r_{i_{h}}^{+}\right\}$, contrary to (C1).
- $z_{i}^{-} x_{i_{j}} \in E(G)$ for some $j \in[1, s]$. It follows that $d_{T}\left(x_{i_{j}}, z_{i}^{-}\right)=d_{T}\left(x_{i_{j}}, z_{i}\right)+1>g\left(T, x_{i_{j}}\right)$, contrary to the choice of z_{i}.
- $x_{i_{j}} z_{i_{h}}^{+} \in E(G)$ for some $j \neq h \in[1, s]$. If $z_{i_{j}}^{+}=z_{i_{h}}^{+}$, then $T^{(2)}=T-\left\{z_{i} z_{i_{j}}^{+}, x_{i_{j}}^{-} x_{i_{j}}\right\}+\left\{z_{i} x_{i_{j}}, z_{i_{j}}^{+} x_{i_{j}}\right\}$ is a spanning tree with $L\left(T^{(2)}\right) \subseteq\left(L(T)-\left\{x_{i_{j}}\right\}\right) \cup\left\{x_{i_{j}}^{-}\right\}$. It is straight to check that $f\left(T^{(2)}, x_{0}\right)>f\left(T, x_{0}\right)$, which indicates that $f\left(T^{(2)}\right)>f(T)$, contrary to (C2). Hence $z_{i_{j}}^{+} \neq z_{i_{h}}^{+}$. Then $T^{(3)}=T-\left\{z_{i} z_{i_{h}}^{+}\right\}+\left\{x_{i_{j}} z_{i_{h}}^{+}\right\}$is a spanning tree with $L\left(T^{(3)}\right)=L(T)-\left\{x_{i_{j}}\right\}$, contrary to (C1).
- $z_{i_{j}}^{+} z_{i_{h}}^{+} \in E(G)$ for some $j \neq h \in[1, s]$. Then $T^{(4)}=T-\left\{z_{i} z_{i_{j}}^{+}, z_{i} z_{i_{h}}^{+}\right\}+\left\{z_{i_{j}}^{+} z_{i_{h}}^{+}, z_{i} x_{i_{j}}\right\}$ is a spanning tree with $L\left(T^{(4)}\right)=L(T)-$ $\left\{x_{i_{j}}\right\}$, contrary to (C1).

Therefore, (*) is true. Since G is $K_{1, r}$-free and z is adjacent to each vertex in $\left\{z_{i}^{-}, x_{i_{1}}, \ldots, x_{i_{s}}\right\} \cup\left\{z_{i_{j}}^{+}: 1 \leq j \leq s\right\}$, we have $s \leq r-3$. This implies that $\left|L_{2}(T)\right| \geq\left|L_{2}^{\prime}(T)\right| \geq\left\lceil\frac{\left|I_{2}\right|}{r-3}\right\rceil$.

Set $U=L(T) \cup L_{1}(T) \cup L_{2}(T)$. By the definitions of $L(T), L_{1}(T)$ and $L_{2}(T)$, three vertex sets $L(T), L_{1}(T)$ and $L_{2}(T)$ are disjoint. Thus $|U|=|L(T)|+\left|L_{1}(T)\right|+\left|L_{2}(T)\right|$.
Claim 3.7. U is independent in G.
Proof. First, we show that $L_{1}(T) \cup L_{2}(T)$ is independent. Set $T_{a}=T-\left\{z_{i} z_{i}^{+}, z_{j} z_{j}^{+}\right\}+\left\{z_{i} x_{i}, z_{j} x_{j}\right\}$ for $z_{i} \neq z_{j} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$. By Claim 3.3, $z_{i} \in V\left(T\left(x_{0}, x_{i}\right)\right)$ and $z_{j} \in V\left(T\left(x_{0}, x_{j}\right)\right)$. Then T_{a} is a spanning tree with $L\left(T_{a}\right) \subseteq\left(L(T)-\left\{x_{i}, x_{j}\right\}\right) \cup\left\{z_{i}^{+}, z_{j}^{+}\right\}$. By Remark 3.1, $L\left(T_{a}\right)$ is independent in G. Hence, $z_{i}^{+} z_{j}^{+} \notin E(G)$.

Next, we show that both $L(T) \cup L_{1}(T)$ and $L(T) \cup L_{2}(T)$ are independent sets. Set $T_{b}=T-\left\{z_{i} z_{i}^{+}\right\}+\left\{z_{i} x_{i}\right\}$ for $z_{i} \in L_{1}^{\prime}(T) \cup$ $L_{2}^{\prime}(T)$. Then T_{b} is a spanning tree with $L\left(T_{b}\right) \subseteq\left(L(T)-\left\{x_{i}\right\}\right) \cup\left\{z_{i}^{+}\right\}$. By Remark 3.1, $L\left(T_{b}\right)$ is independent in G. Hence, $z_{i}^{+} x_{j} \notin$ $E(G)$ for $j \in[0, t]-\{i\}$. On the other hand, by Claims 3.1 and $3.5, L(T)$ is independent in G and $z_{i}^{+} \notin N_{G}\left(x_{i}\right)$ for $z_{i} \in L_{1}^{\prime}(T) \cup$ $L_{2}^{\prime}(T)$.

Therefore, U is independent in G.
Claim 3.8. $\alpha(G)=k+1+\left\lceil\frac{k}{r-3}\right\rceil,\left|I_{1}\right|+\left|I_{2}\right|=t=k,\left|I_{1}\right|+\left\lceil\frac{\left|I_{2}\right|}{r-3}\right\rceil=\left\lceil\frac{k}{r-3}\right\rceil$, and $k=p(r-3)$ for some integer $p>1$.
Proof. Recall that $\left|I_{1}\right|+\left|I_{2}\right|=t \geq k$ and $\left|L_{1}(T)\right|=\left|L_{1}^{\prime}(T)\right|=\left|I_{1}\right|$. By Claim 3.6, $\left|L_{2}(T)\right| \geq\left|L_{2}^{\prime}(T)\right| \geq\left\lceil\frac{\left|I_{2}\right|}{r-3}\right\rceil$. This together with Claim 3.7 and the assumption $\alpha(G) \leq k+\left\lceil\frac{k+1}{r-3}\right\rceil-\left\lfloor\frac{1}{|r-k-3|+1}\right\rfloor$, we have

$$
\begin{aligned}
\alpha(G) \geq|U| & =|L(T)|+\left|L_{1}(T)\right|+\left|L_{2}(T)\right| \\
& \geq t+1+\left|I_{1}\right|+\left\lceil\frac{\left|I_{2}\right|}{r-3}\right\rceil \\
& \geq t+1+\left\lceil\frac{t}{r-3}\right\rceil \\
& \geq k+1+\left\lceil\frac{k}{r-3}\right\rceil,
\end{aligned}
$$

which implies $\alpha(G)=k+1+\left\lceil\frac{k}{r-3}\right\rceil,\left|I_{1}\right|+\left|I_{2}\right|=t=k,\left|I_{1}\right|+\left\lceil\frac{\left|I_{2}\right|}{r-3}\right\rceil=\left\lceil\frac{k}{r-3}\right\rceil$, and $k=p(r-3)$ for some integer $p>1$.
Recall that $L_{2}(T)=\left\{z_{i}^{+}: z_{i} \in L_{2}^{\prime}(T)\right\}$. By Claim 3.8, we have $p=\frac{k}{r-3}$ with $p>1$ and there is a partition $\left\{X_{1}, \ldots, X_{p}\right\}$ of $L(T)-\left\{x_{0}\right\}$ satisfying that $\left|X_{i}\right|=1$ for $i \in I_{1}$, and $\left|X_{i}\right|=r-3$ for $i \in I_{2}$. By relabeling x_{1}, \ldots, x_{k} (if necessary), we may assume that for each $i \in[1, p], x_{i} \in X_{i}$. For $i \in I_{2}$, let $X_{i}=\left\{x_{i_{1}}, \ldots, x_{i_{r-3}}\right\}$, where $i_{1}=i$. Then $z_{i_{1}}^{+}=\ldots=z_{i_{r-3}}^{+}=z_{i}^{+}$. We denote $F^{*}=\left\{z_{i}\right.$: $\left.i \in[1, p], z_{i} \in V\left(T\left(x_{0}, y_{0}\right)\right)\right\}$. By Claim 3.2, we assume that $y_{0} \in V\left(T\left(x_{0}, r_{i_{1}}\right]\right)$ for some $i_{1} \in[1, k]$. Denote by r_{0} the first branch vertex of T on $T\left[x_{0}, r_{i_{1}}\right]$ (possible $r_{0}=r_{i_{1}}$) and r_{0}^{+}the successor of r_{0} on $T\left[x_{0}, x_{i_{1}}\right]$.

Case $1 F^{*}=\emptyset$.
Claim 3.9. There exists $z_{0} \in V\left(T\left(x_{0}, y_{0}\right)\right)$ such that $z_{0} \notin N_{G}\left[x_{0}\right]$ and $V\left(T\left[z_{0}^{+}, y_{0}\right]\right) \subseteq N_{G}\left(x_{0}\right)$, where z_{0}^{+}is the successor of z_{0} on $T\left[x_{0}, x_{i_{1}}\right]$.
Proof. Suppose that Claim 3.9 is false. Then $N_{G}\left[x_{0}\right] \cap V\left(T\left[x_{0}, r_{i_{1}}\right]\right)=V\left(T\left[x_{0}, y_{0}\right]\right)$ and $r_{0}, r_{i_{1}}$ and y_{0} are all on the path $T\left[x_{0}, x_{i_{1}}\right]$. If $y_{0} \in V\left(T\left(r_{0}, r_{i_{1}}\right]\right)$, then $x_{0} r_{0}^{+} \in E(G)$, a contradiction to Claim 3.4. If $y_{0} \in V\left(T\left(x_{0}, r_{0}\right]\right)$, since $G-y_{0}$ is a connected graph, there exists $u_{0} \in V\left(T\left(x_{0}, y_{0}\right)\right)$ satisfying that u_{0} has a neighbour v_{0} in $T-T\left[x_{0}, y_{0}\right]$. Set $T^{*}=T-\left\{u_{0} u_{0}^{+}\right\}+\left\{x_{0} u_{0}^{+}\right\}$. Then T^{*} is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{0}\right\}\right) \cup\left\{u_{0}\right\}$ that satisfies (C1) and (C2). Noting that $d_{T^{*}}\left(u_{0}, y_{0}\right)=d_{T}\left(x_{0}, y_{0}\right)$, we have $d_{T^{*}}\left(u_{0}, v_{0}\right)>d_{T}\left(x_{0}, y_{0}\right)$ and $g\left(T^{*}, u_{0}\right)>g\left(T, x_{0}\right)$. On the other hand, since $F^{*}=\emptyset$, we have $N_{G}\left(x_{j}\right) \cap V\left(T\left(x_{0}, y_{0}\right)\right)=\emptyset$ and $g\left(T^{*}, x_{j}\right)=g\left(T, x_{j}\right)$ for $1 \leq j \leq k$. Hence $g\left(T^{*}\right)>g(T)$, contrary to (C3).
Claim 3.10. $\left\{z_{0}\right\} \cup U$ is independent in G.
Proof. Recall that U is independent in G.
First, we prove that $\left\{z_{0}\right\} \cup L(T)$ is independent in G. We have $z_{0} \notin N_{G}\left(x_{0}\right)$ by Claim 3.9. Set $T_{a}=T-\left\{z_{0} z_{0}^{+}\right\}+\left\{x_{0} z_{0}^{+}\right\}$. Then T_{a} is a spanning tree with $L\left(T_{a}\right)=\left(L(T)-\left\{x_{0}\right\}\right) \cup\left\{z_{0}\right\}$. By Remark $3.1, z_{0}$ is a leaf of T_{a} and $L\left(T_{a}\right)$ is independent in G. Hence, $z_{0} x_{i} \notin E(G)$ for $i \in[1, k]$.

Next, we show that $\left\{z_{0}\right\} \cup L_{1}(T) \cup L_{2}(T)$ is independent in G. Set $T_{b}=T-\left\{z_{0} z_{0}^{+}, z_{i} z_{i}^{+}\right\}+\left\{x_{0} z_{0}^{+}, z_{i} x_{i}\right\}$ for $z_{i} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$. Since $F^{*}=\emptyset$ and $z_{i} \in V\left(T\left(x_{0}, r_{i}\right)\right), T_{b}$ is a spanning tree with $L\left(T_{b}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{i}\right\}\right) \cup\left\{z_{0}, z_{i}^{+}\right\}$. By Remark 3.1, both z_{0} and z_{i}^{+}are leaves of T_{b} and $L\left(T_{b}\right)$ is independent. Hence, $z_{0} z_{i}^{+} \notin E(G)$ for $z_{i} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$.

Therefore, $\left\{z_{0}\right\} \cup U$ is independent in G.
By Claim 3.10, we have $\alpha(G) \geq\left|\left\{z_{0}\right\} \cup U\right| \geq k+1+\left\lceil\frac{k}{r-3}\right\rceil+1$, contrary to Claim 3.8. Hence Theorem 1.8 holds for Case 1 .
Case $2 F^{*} \neq \emptyset$.
Choose $z_{j} \in V\left(T\left(x_{0}, y_{0}\right)\right)$ such that $d_{T}\left(x_{0}, z_{j}\right)$ is as large as possible for $z_{j} \in F^{*}$. Denote the successor of z_{j} on $T\left(x_{0}, x_{j_{1}}\right)$ and $T\left(x_{0}, x_{i_{1}}\right)$ by z_{j}^{+}and z_{j}^{*}, respectively. By Claim 3.3, we have $r_{i_{1} j_{1}} \in V\left(T\left[z_{j}, r_{i_{1}}\right]\right)$.
Claim 3.11. $z_{j}^{+}, z_{j}^{*} \notin N_{G}\left(x_{0}\right)$ and there exists $u_{0} \in V\left(T\left(z_{j}, y_{0}\right)\right.$) (possible $u_{0}=z_{j}^{*}$) satisfying that $u_{0} \notin N_{G}\left(x_{0}\right)$ and $V\left(T\left[u_{0}^{+}, y_{0}\right]\right) \subseteq$ $N_{G}\left(x_{0}\right)$.

Proof. If $x_{0} z_{j}^{+} \in E(G)$, then $T_{a}=T-\left\{z_{j} z_{j}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{x_{0} z_{j}^{+}, z_{j} x_{j_{1}}\right\}$ with $L\left(T_{a}\right)=\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$, contrary to (C1). Then $z_{j}^{+} \notin N_{G}\left(x_{0}\right)$. If $r_{i_{1} j_{1}} \neq z_{j}$, then $z_{j}^{+}=z_{j}^{*}$ and thus $z_{j}^{*} \notin N_{G}\left(x_{0}\right)$. If $r_{i_{1} j_{1}}=z_{j}$, then $T_{b}=T-\left\{z_{j} z_{j}^{*}\right\}+\left\{x_{0} z_{j}^{*}\right\}$ with $L\left(T_{b}\right)=$ $L(T)-\left\{x_{0}\right\}$, contrary to (C1). So $z_{j}^{*} \notin N_{G}\left(x_{0}\right)$. Therefore, there exists $u_{0} \in V\left(T\left(z_{j}, y_{0}\right)\right)$ (possible $u_{0}=z_{j}^{*}$) satisfying that $u_{0} \notin N_{G}\left(x_{0}\right)$ and $V\left(T\left[u_{0}^{+}, y_{0}\right]\right) \subseteq N_{G}\left(x_{0}\right)$.

Set $L^{*}(T)=\left(L(T)-\left\{x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$and $U^{*}=L^{*}(T) \cup L_{1}(T) \cup L_{2}(T)$.
Claim 3.12. U^{*} is independent in G.
Proof. Note that U is independent in G.
First, we show that $L^{*}(T)$ is independent. Set $T_{a}=T-\left\{r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{z_{j} x_{j_{1}}\right\}$. Then T_{a} is a spanning tree with $L\left(T_{a}\right)=(L(T)-$ $\left.\left\{x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$. By Remark 3.1, $L\left(T_{a}\right)$ is independent. Hence, $r_{j_{1}}^{+} x_{h} \notin E(G)$ for $h \in[0, k]-\left\{j_{1}\right\}$.

Next, we prove that $\left\{r_{j_{1}}^{+}\right\} \cup\left(L_{1}(T) \cup L_{2}(T)-\left\{z_{j}^{+}\right\}\right)$is independent in G. Set $T_{b}=T-\left\{r_{j_{1}} r_{j_{1}}^{+}, z_{h} z_{h}^{+}\right\}+\left\{z_{j} x_{j_{1}}, z_{h} x_{h}\right\}$ for $z_{h} \in$ $L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$. Then by Claim 3.3 and the maximality of $d_{T}\left(x_{0}, z_{j}\right), T_{b}$ is a spanning tree with $L\left(T_{b}\right) \subseteq(L(T)-$ $\left.\left\{x_{j_{1}}, x_{h}\right\}\right) \cup\left\{r_{j_{1}}^{+}, z_{h}^{+}\right\}$. By Remark 3.1, both $r_{j_{1}}^{+}$and z_{h}^{+}are leaves of T_{b} and $L\left(T_{b}\right)$ is independent in G. Hence, $r_{j_{1}}^{+} z_{h}^{+} \notin E(G)$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$.

At last, we may consider that $z_{j}^{+} r_{j_{1}}^{+} \notin E(G)$. In fact, if $z_{j}^{+} r_{j_{1}}^{+} \in E(G)$, then $T_{c}=T-\left\{r_{j_{1}} r_{j_{1}}^{+}, z_{j} z_{j}^{+}\right\}+\left\{z_{j} x_{j_{1}}, z_{j}^{+} r_{j_{1}}^{+}\right\}$with $L\left(T_{c}\right)=$ $L(T)-\left\{x_{j_{1}}\right\}$, contrary to (C1).

Therefore, U^{*} is independent in G.
Claim 3.13. $r_{i_{1} j_{1}} \notin T\left[r_{0}, y_{0}\right)$.
Proof. Assume that $r_{i_{1} j_{1}} \in T\left[r_{0}, y_{0}\right)$. This together with Claim 3.2 and $r_{i_{1} j_{1}} \in V\left(T\left[z_{j}, r_{i_{1}}\right]\right)$ implies that $r_{i_{1} j_{1}} \in V\left(T\left[z_{j}, y_{0}\right)\right)$. Let u_{0} be the vertex in Claim 3.11, we have $V\left(T\left[u_{0}^{+}, y_{0}\right]\right) \subseteq N_{G}\left(x_{0}\right)$. By Claim 3.4, $u_{0} \in V\left(T\left(r_{i_{1} j_{1}}, y_{0}\right)\right)$. Then it follows that $r_{i_{1} j_{1}} \in$ $V\left(T\left[z_{j}, u_{0}\right)\right.$). Thus $u_{0} \notin N_{G}\left(z_{j}^{+}\right)$. Otherwise, if $r_{i_{1} j_{1}} \in V\left(T\left(z_{j}, u_{0}\right)\right)$, then $T^{\prime}=T-\left\{z_{j} z_{j}^{+}, u_{0} u_{0}^{+}, r_{i_{1} j_{1}} r_{i_{1} j_{1}}^{+}\right\}+\left\{x_{0} u_{0}^{+}, u_{0} z_{j}^{+}, x_{j_{1}} z_{j}\right\}$ is a spanning tree with $L\left(T^{\prime}\right) \subseteq L(T)-\left\{x_{0}, x_{j_{1}}\right\}+\left\{r_{i_{1} j_{1}}^{+}\right\}$, contrary to (C1). If $r_{i_{1} j_{1}}=z_{j}$, then $T^{\prime \prime}=T-\left\{z_{j} z_{j}^{+}, u_{0} u_{0}^{+}\right\}+\left\{x_{0} u_{0}^{+}, u_{0} z_{j}^{+}\right\}$ is a spanning tree with $L\left(T^{\prime \prime}\right) \subseteq L(T)-\left\{x_{0}\right\}$, contrary to (C1).

Now we show that $\left\{u_{0}\right\} \cup U^{*}$ or $\left\{r_{i_{1} j_{1}}^{+}\right\} \cup U^{*}$ is independent in G.
Note that U^{*} is independent. Assume that $w \in\left\{u_{0}, r_{i_{1} j_{1}}^{+}\right\}$.
First, we show that $\{w\} \cup L^{*}(T)$ is independent. Set

$$
T_{a}:=\left\{\begin{array}{cc}
T-\left\{u_{0} u_{0}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{j} x_{j_{1}}\right\}, & \text { if } w=u_{0} \\
T-\left\{r_{i_{1} j_{1}} r_{i_{1} j_{1}}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{j} x_{j_{1}}\right\}, & \text { if } w=r_{i_{1} j_{1}}^{+}
\end{array}\right.
$$

Then by Claim 3.3, T_{a} is a spanning tree with $L\left(T_{a}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{w, r_{j_{1}}^{+}\right\}$. By Remark 3.1, both w and $r_{j_{1}}^{+}$are leaves of T_{a} and $L\left(T_{a}\right)$ is independent in G. By Claims 3.4 and 3.11, $w \notin N_{G}\left(x_{0}\right)$. Hence, $w r_{j_{1}}^{+} \notin E(G)$ and $w x_{h} \notin E(G)$ for $h \in[0, k]-\left\{j_{1}\right\}$.

Next, we prove that $\left\{u_{0}\right\} \cup L_{1}(T) \cup L_{2}(T)$ or $\left\{r_{i_{1} j_{1}}^{+}\right\} \cup L_{1}(T) \cup L_{2}(T)$ is independent in G. Note that $w \notin N_{G}\left(z_{j}^{+}\right)$. For $z_{h} \in$ $L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$, we set

$$
T_{b}:= \begin{cases}T-\left\{u_{0} u_{0}^{+}, z_{h} z_{h}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{h} x_{h}\right\}, & \text { if } z_{h}^{+} \notin F^{*} ; \\ T-\left\{r_{i_{1} j_{1}} r_{i_{1} j_{1}}^{+}, z_{j} z_{j}^{+}, z_{h} z_{h}^{+}\right\}+\left\{z_{h}^{+} r_{i_{1} j_{1}}^{+}, z_{h} x_{h_{1}}, z_{j} x_{j_{1}}\right\}, & \text { if } z_{h}^{+} \in F^{*} \text { and } r_{i_{1} j_{1}}^{+} z_{h}^{+} \in E(G)\end{cases}
$$

- If $z_{h}^{+} \notin F^{*}$, then by Claim 3.3, T_{b} is a spanning tree with $L\left(T_{b}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{h}\right\}\right) \cup\left\{u_{0}, z_{h}^{+}\right\}$. By Remark 3.1, both u_{0} and z_{h}^{+}are leaves of T_{b} and $L\left(T_{b}\right)$ is independent. Hence, $u_{0} z_{h}^{+} \notin E(G)$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$.
- If $z_{h}^{+} \in F^{*}$ and $r_{i_{1} j_{1}}^{+} z_{h}^{+} \in E(G)$, then by Claim 3.3, T_{b} is a spanning tree of G with $L\left(T_{b}\right)=\left(L(T)-\left\{x_{h_{1}}, x_{j_{1}}\right\}\right) \cup\left\{z_{j}^{+}\right\}$, contrary to (C1). Thus $r_{i_{1} j_{1}}^{+} z_{h}^{+} \notin E(G)$. Hence, $r_{i_{1} j_{1}}^{+} z_{h}^{+} \notin E(G)$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$.
Therefore, $\left\{u_{0}\right\} \cup U^{*}$ or $\left\{r_{i_{1} j_{1}}^{+}\right\} \cup U^{*}$ is independent in G. Thus $\alpha(G) \geq\left|U^{*}\right|+1 \geq k+1+\left\lceil\frac{k}{r-3}\right\rceil+1$, contrary to Claim 3.8. This proves Claim 3.13.

By Claim 3.13, $r_{i_{1} j_{1}} \in V\left(T\left[y_{0}, r_{i_{1}}\right]\right) \cup V\left(T\left[y_{0}, r_{j_{1}}\right]\right)$. Without loss of generality, assume that $r_{i_{1} j_{1}} \in V\left(T\left[y_{0}, r_{j_{1}}\right]\right)$.
Claim 3.14. One of the following two statements holds.
(i) $u_{0} \notin N_{G}\left(z_{j}^{+}\right)$or there exists $w_{0} \in V\left(T\left(z_{j}^{+}, u_{0}\right)\right)$ satisfying that $w_{0} \notin N_{G}\left(z_{j}^{+}\right)$and $V\left(T\left[w_{0}^{+}, u_{0}\right]\right) \subseteq N_{G}\left(z_{j}^{+}\right)$;
(ii) $u_{0}=z_{j}^{+}$or $V\left(T\left[z_{j}^{+}, u_{0}\right]\right) \subseteq N_{G}\left[z_{j}^{+}\right]$.

Proof. Suppose that Claim 3.14 (ii) is false. Then $\left|V\left(T\left[z_{j}^{+}, u_{0}\right]\right)\right| \geq 3$ and $V\left(T\left[z_{j}^{+}, u_{0}\right]\right) \nsubseteq N_{G}\left[z_{j}^{+}\right]$. If $u_{0} \in N_{G}\left(z_{j}^{+}\right)$, then since $V\left(T\left[z_{j}^{+}, u_{0}\right]\right) \nsubseteq N_{G}\left[z_{j}^{+}\right]$, there is $w_{0} \in V\left(T\left(z_{j}^{+}, u_{0}\right)\right)$ satisfying that $w_{0} \notin N_{G}\left(z_{j}^{+}\right)$and $V\left(T\left[w_{0}^{+}, u_{0}\right]\right) \subseteq N_{G}\left(z_{j}^{+}\right)$.

Subcase 2.1 Claim 3.14(i) holds.

In this subcase, $w_{0} \notin N_{G}\left(z_{j}^{+}\right) \cup N_{G}\left(x_{0}\right)$. In fact, suppose that $x_{0} w_{0} \in E(G)$. Then by Claim 3.3, $T^{*}=T-$ $\left\{r_{j_{1}} r_{j_{1}}^{+}, w_{0} w_{0}^{+}, z_{j} z_{j}^{+}\right\}+\left\{z_{j} x_{j_{1}}, x_{0} w_{0}, z_{j}^{+} w_{0}^{+}\right\}$is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$, contrary to (C1).

Claim 3.15. If $u_{0} \notin N_{G}\left(z_{j}^{+}\right)$, then $\left\{u_{0}\right\} \cup U^{*}$ is independent in G.
Proof. Note that U^{*} is independent in G.
First, we show that $\left\{u_{0}\right\} \cup L^{*}(T)$ is independent in G. Set $T_{a}=T-\left\{u_{0} u_{0}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{j} x_{j_{1}}\right\}$. Then by Claim 3.3, T_{a} is a spanning tree of G with $L\left(T_{a}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{u_{0}, r_{j_{1}}^{+}\right\}$. By Remark 3.1, both u_{0} and $r_{j_{1}}^{+}$are leaves of T_{a} and $L\left(T_{a}\right)$ is an independent set. By Claim 3.11, $u_{0} \notin N_{G}\left(x_{0}\right)$. Hence, $u_{0} r_{j_{1}}^{+} \notin E(G)$ and $u_{0} x_{h} \notin E(G)$ for $h \in[0, k]-\left\{j_{1}\right\}$.

Next, we prove that $\left\{u_{0}\right\} \cup L_{1}(T) \cup L_{2}(T)$ is independent in G. Note that $u_{0} \notin N_{G}\left(z_{j}^{+}\right)$. For $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$, we set

$$
T_{b}:= \begin{cases}T-\left\{u_{0} u_{0}^{+}, z_{h} z_{h}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{h} x_{h_{1}}\right\}, & \text { if } z_{h}^{+} \notin F^{*} \\ T-\left\{u_{0} u_{0}^{+}, z_{h} z_{h}^{+}, r_{h} r_{h}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{h} x_{h_{1}}, x_{j_{1}} z_{j}\right\}, & \text { if } z_{h}^{+} \in F^{*} .\end{cases}
$$

Then by Claim 3.3, T_{b} is a spanning tree of G with

$$
L\left(T_{b}\right) \subseteq \begin{cases}\left(L(T)-\left\{x_{0}, x_{h}\right\}\right) \cup\left\{u_{0}, z_{h}^{+}\right\}, & \text {if } z_{h}^{+} \notin F^{*} ; \\ \left(L(T)-\left\{x_{0}, x_{h_{1}}, x_{j_{1}}\right\}\right) \cup\left\{u_{0}, z_{h}^{+}, r_{h}^{+}\right\}, & \text {if } z_{h}^{+} \in F^{*}\end{cases}
$$

By Remark 3.1, both u_{0} and z_{h}^{+}are leaves of T_{b} and $L\left(T_{b}\right)$ is independent in G. Hence, $u_{0} z_{h}^{+} \notin E(G)$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$.
Therefore, $\left\{u_{0}\right\} \cup U^{*}$ is independent in G.
Claim 3.16. If $u_{0} \in N_{G}\left(z_{j}^{+}\right)$, then $\left\{w_{0}\right\} \cup U^{*}$ is independent in G.
Proof. Note that U^{*} is independent in G.
First, we show that $\left\{w_{0}\right\} \cup L^{*}(T)$ is independent in G. Set $T_{a}=T-\left\{w_{0} w_{0}^{+}, z_{j} z_{j}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{j}^{+} w_{0}^{+}, z_{j} x_{j_{1}}\right\}$. Then by Claim 3.3, T_{a} is a spanning tree of with $L\left(T_{a}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{w_{0}, r_{j_{1}}^{+}\right\}$. By Remark 3.1, w_{0} and $r_{j_{1}}^{+}$are two leaves of T_{a} and $L\left(T_{a}\right)$ is independent in G. If $x_{0} w_{0} \in E(G)$, then by Claim 3.3, $T^{*}=T-\left\{r_{j_{1}} r_{j_{1}}^{+}, w_{0} w_{0}^{+}, z_{j} z_{j}^{+}\right\}+\left\{z_{j} x_{j_{1}}, x_{0} w_{0}, z_{j}^{+} w_{0}^{+}\right\}$is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$, contrary to $(C 1)$. Thus $w_{0} \notin N_{G}\left(x_{0}\right)$. Hence, $w_{0} r_{j_{1}}^{+} \notin E(G)$ and $w_{0} x_{h} \notin E(G)$ for $h \in[0, t]-\left\{j_{1}\right\}$.

Next, we prove that $\left\{w_{0}\right\} \cup L_{1}(T) \cup L_{2}(T)$ is independent in G. Note that $w_{0} \notin N_{G}\left(z_{j}^{+}\right)$. For $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$, we set

$$
T_{b}:= \begin{cases}T-\left\{w_{0} w_{0}^{+}, z_{j} z_{j}^{+}, z_{h} z_{h}^{+}\right\}+\left\{z_{j}^{+} w_{0}^{+}, z_{h} x_{h_{1}}, z_{j} x_{j_{1}}\right\}, & \text { if } z_{h}^{+} \notin F^{*} ; \\ T-\left\{w_{0} w_{0}^{+}, z_{j} z_{j}^{+}, z_{h} z_{h}^{+}, r_{h} r_{h}^{+}\right\}+\left\{z_{j}^{+} w_{0}^{+}, x_{0} u_{0}^{+}, z_{h} x_{h_{1}}, z_{j} x_{j_{1}}\right\}, & \text { if } z_{h}^{+} \in F^{*} .\end{cases}
$$

Then by Claim 3.3, T_{b} is a spanning tree with

$$
L\left(T_{b}\right) \subseteq \begin{cases}\left(L(T)-\left\{x_{h_{1}}, x_{j_{1}}\right\}\right) \cup\left\{w_{0}, z_{h}^{+}\right\}, & \text {if } z_{h}^{+} \notin F^{*} \\ \left(L(T)-\left\{x_{0}, x_{h_{1}}, x_{j_{1}}\right\}\right) \cup\left\{w_{0}, z_{h}^{+}, r_{h}^{+}\right\}, & \text {if } z_{h}^{+} \in F^{*}\end{cases}
$$

By Remark 3.1, both w_{0} and z_{h}^{+}are leaves of T_{b} and $L\left(T_{b}\right)$ is independent in G. Hence, $w_{0} z_{h}^{+} \notin E(G)$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$. Therefore, $\left\{w_{0}\right\} \cup U^{*}$ is independent in G.

Subcase 2.2 Claim 3.14(ii) holds and $y_{0} \neq r_{j_{h}}$ for some $1 \leq h \leq r-3$.
Claim 3.17. $\operatorname{deg}_{T}(x)=2$ for any $x \in V\left(T\left[z_{j}^{+}, y_{0}^{-}\right]\right)$.
Proof. Suppose that $\operatorname{deg}_{T}(x) \geq 3$ for some $x \in V\left(T\left[z_{j}^{+}, y_{0}^{-}\right]\right)$. Denote the successor of x on $T\left[x_{0}, y_{0}\right]$ by x^{+}. If $x \in V\left(T\left[u_{0}, y_{0}^{-}\right]\right)$, then $x^{+} \in N_{G}\left(x_{0}\right)$. Set $T^{*}=T-\left\{x x^{+}\right\}+\left\{x_{0} x^{+}\right\}$. Then T^{*} is a spanning tree with $L\left(T^{*}\right)=L(T)-\left\{x_{0}\right\}$, contrary to (C1). If $x \in V\left(T\left[z_{j}^{+}, u_{0}^{-}\right]\right)$, then if $\left|V\left(T\left[z_{j}^{+}, u_{0}\right]\right)\right|=2$, then $x=z_{j}^{+}$. Set $T^{\prime}=T-\left\{z_{j} z_{j}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{x_{0} u_{0}^{+}, z_{j} x_{j_{1}}\right\}$. Then T^{\prime} is a spanning tree with $L\left(T^{\prime}\right)=\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$, contrary to $(C 1)$. If $\left|V\left(T\left[z_{j}^{+}, u_{0}\right]\right)\right| \geq 3$, then set $T^{\prime \prime}=T-\left\{x x^{+}, z_{j} z_{j}^{+}, r_{j_{1}} r_{j_{1}}^{+}\right\}+$ $\left\{x_{0} u_{0}^{+}, z_{j} x_{j_{1}}, z_{j}^{+} x^{+}\right\}$. Then $T^{\prime \prime}$ is a spanning tree with $L\left(T^{\prime \prime}\right)=\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{r_{j_{1}}^{+}\right\}$, contrary to (C1).

By Claims 3.3 and 3.17, $V\left(T\left[x_{0}, r_{i_{1} j_{1}}\right]\right) \supseteq V\left(T\left[x_{0}, y_{0}\right]\right)$. Denote the successor of y_{0} on $T\left[x_{0}, x_{j_{1}}\right]$ by y_{0}^{+}.
Claim 3.18. $\left\{y_{0}{ }^{+}\right\} \cup U^{*}$ is independent in G.
Proof. Note that U^{*} is independent in G.
First, we show that $\left\{y_{0}{ }^{+}\right\} \cup L^{*}(T)$ is independent in G. Set $T_{a}=T-\left\{y_{0} y_{0}{ }^{+}, z_{j} z_{j}^{+}\right\}+\left\{x_{0} y_{0}, z_{j} x_{j_{1}}\right\}$. Then by Claim 3.3, T_{a} is a spanning tree with $L\left(T_{a}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{y_{0}^{+}, z_{j}^{+}\right\}$. By Remark 3.1, both y_{0}^{+}and z_{j}^{+}are two leaves of T_{a} and $L\left(T_{a}\right)$ is independent in G. So $y_{0}{ }^{+} x_{h} \notin E(G)$ for $h \in[1, t]-\left\{j_{1}\right\}$. By the choice of $y_{0}, y_{0}{ }^{+} x_{0} \notin E(G)$. If $y_{0}{ }^{+} r_{j_{1}} \in E(G)$, then set $T_{b}=$ $T_{a}-\left\{r_{j_{1}} r_{j_{1}}^{+}\right\}+\left\{y_{0}^{+} r_{j_{1}}^{+}\right\}$. Thus $L\left(T_{b}\right)=\left(L(T)-\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{z_{j}^{+}\right\}$, contrary to (C1).

Next, we prove that $\left\{y_{0}+\right\} \cup L_{1}(T) \cup L_{2}(T)$ is independent. If $y_{0}^{+}=z_{h}^{+}$for some $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$, then we need to consider the graph $G\left[y_{0}, x_{0}, y_{0}^{-}, y_{0}^{+}, x_{h_{1}}, \ldots, x_{h_{r-3}}\right]$. Since G is $K_{1, r}$-free, we have $y_{0}^{+} y_{0}^{-} \in E(G)$ or $x_{0}^{+} y_{0}^{-} \in E(G)$ or $y_{0}^{+} x_{h_{l}} \in E(G)$ for some $1 \leq l \leq r-3$.

- $y_{0}^{+} y_{0}^{-} \in E(G)$. Then $T^{\prime}=T-\left\{y_{0} y_{0}^{+}, y_{0} y_{0}^{-}, r_{h_{1}} r_{h_{1}}^{+}\right\}+\left\{x_{0} y_{0}, y_{0}^{+} y_{0}^{-}, y_{0} x_{h_{1}}\right\}$ is a spanning tree with $L\left(T^{\prime}\right)=\left(L(T)-\left\{x_{0}, x_{h_{1}}\right\}\right) \cup$ $\left\{r_{h_{1}}^{+}\right\}$, contrary to (C1).
- $x_{0} y_{0}^{-} \in E(G)$. Then $T^{\prime \prime}=T-\left\{y_{0} y_{0}^{-}, z_{j} z_{j}^{+}, r_{h_{1}} r_{h_{1}}^{+}\right\}+\left\{x_{0} y_{0}^{-}, z_{j} x_{j_{1}}, y_{0} x_{h_{1}}\right\} \quad$ is a spanning tree with $L\left(T^{\prime \prime}\right)=(L(T)-$ $\left.\left\{x_{0}, x_{j_{1}}, x_{h_{1}}\right\}\right) \cup\left\{z_{j}^{+}, r_{h_{1}}^{+}\right\}$, contrary to (C1).
- $y_{0}^{+} x_{h_{l}} \in E(G)$ for some $1 \leq l \leq r-3$. Then $T^{\prime \prime \prime}=T-\left\{y_{0} y_{0}^{+}, z_{j} z_{j}^{+}, r_{h_{l}} r_{h_{l}}^{+}\right\}+\left\{x_{0} y_{0}, z_{j} x_{j_{l}}, y_{0}^{+} x_{h_{l}}\right\}$ is a spanning tree with $L\left(T^{\prime \prime \prime}\right)=\left(L(T)-\left\{x_{0}, x_{j_{l}}, x_{h_{l}}\right\}\right) \cup\left\{z_{j}^{+}, r_{h_{l}}^{+}\right\}$, contrary to $(C 1)$.

So $y_{0}^{+} \neq z_{h}^{+}$for any $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$. Set $T_{c}=T_{a}-\left\{z_{h} z_{h}^{+}\right\}+\left\{z_{h} x_{h_{1}}\right\}$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)-\left\{z_{j}\right\}$. Then T_{c} is a spanning tree with $L\left(T_{c}\right) \subseteq\left(L(T)-\left\{x_{0}, x_{j_{1}}, x_{h}\right\}\right) \cup\left\{y_{0}^{+}, z_{j}^{+}, z_{h}^{+}\right\}$. By Remark 3.1, y_{0}^{+}, z_{j}^{+}and z_{h}^{+}are leaves of T_{c} and $L\left(T_{c}\right)$ is independent in G. Hence, $y_{0}^{+} z_{h}^{+} \notin E(G)$ for $z_{h} \in L_{1}^{\prime}(T) \cup L_{2}^{\prime}(T)$.

Therefore, $\left\{y_{0}{ }^{+}\right\} \cup U^{*}$ is independent in G.
Subcase 2.3 Claim 3.14(ii) holds and $y_{0}=r_{j_{h}}$ for any $1 \leq h \leq r-3$.
Claim 3.19. $\left\{r_{j_{1}}^{+}, \ldots, r_{j_{r-3}}^{+}, x_{0}, y_{0}^{-}\right\}$is an independent set and $\operatorname{deg}_{T}\left(y_{0}\right)=r-2$.
Proof. We first show that $\left\{r_{j_{1}}^{+}, \ldots, r_{j_{r-3}}^{+}, x_{0}\right\}$ is independent in G. By Claim 3.4, $\left\{r_{j_{s}}^{+}, x_{0}\right\}$ is an independent set for $1 \leq s \leq r-3$. If $r-3=1$, then $\left\{r_{i_{1}}^{+}, x_{0}\right\}$ is independent in G. If $r-3 \geq 2$, set $T^{*}=T-\left\{y_{0} r_{j_{p}}^{+}, y_{0} r_{j_{q}}^{+}\right\}+\left\{z_{j} x_{j_{p}}, z_{j} x_{j_{q}}\right\}$ for $1 \leq p \neq q \leq r-3$. Then by Claim 3.3, T^{*} is a spanning tree with $L\left(T^{*}\right)=\left(L(T)-\left\{x_{j_{p}}, x_{j_{q}}\right\}\right) \cup\left\{r_{j_{p}}^{+}, r_{j_{q}}^{+}\right\}$. By Remark 3.1, $L\left(T^{*}\right)$ is independent in G. Hence, $r_{j_{p}}^{+} r_{j_{q}}^{+} \notin E(G)$.

Next, if $x_{0} y_{0}^{-} \in E(G)$, then by Claim 3.3, $T^{\prime}=T-\left\{y_{0}^{-} y_{0}, z_{j} z_{j}^{+}\right\}+\left\{x_{0} y_{0}^{-}, z_{j} x_{j_{1}}\right\}$ is a spanning tree with $L\left(T^{\prime}\right)=(L(T)-$ $\left.\left\{x_{0}, x_{j_{1}}\right\}\right) \cup\left\{z_{j}^{+}\right\}$, contrary to $(C 1)$; if $y_{0}^{-} r_{j_{s}}^{+} \in E(G)$ for some $1 \leq s \leq r-3$, then by Claim 3.3, $T^{\prime \prime}=T-\left\{y_{0}^{-} y_{0}, y_{0} r_{j_{s}}^{+}\right\}+$ $\left\{x_{0} y_{0}, r_{j_{s}}^{+} y_{0}^{-}\right\}$is a spanning tree with $L\left(T^{\prime \prime}\right)=\left(L(T)-\left\{x_{0}, x_{j_{s}}\right\}\right) \cup\left\{r_{j_{s}}^{+}\right\}$, contrary to (C1). Therefore, $\left\{r_{j_{1}}^{+}, \ldots, r_{j_{r-3}}^{+}, x_{0}, y_{0}^{-}\right\}$is independent in G.

Now we prove that $\operatorname{deg}_{T}\left(y_{0}\right)=r-2$. Assume that $\operatorname{deg}_{T}\left(y_{0}\right) \geq r-1$ and $y_{0} x \in E(T)$ for $x \notin\left\{r_{j_{1}}^{+}, \ldots, r_{j_{r-3}}^{+}, y_{0}^{-}\right\}$. Since G is $K_{1, r}$-free and $\left\{y_{0}, r_{j_{1}}^{+}, \ldots, r_{j_{r-3}}^{+}, x_{0}, y_{0}^{-}\right\}$is an induced $K_{1, r-1}$, we have $x y \in E(G)$ for some $y \in\left\{r_{j_{1}}^{+}, \ldots, r_{j_{r-3}}^{+}, x_{0}, y_{0}^{-}\right\}$. By Claim 3.4, $x_{0} x \notin E(G)$. If $x r_{j_{s}}^{+} \in E(G)$ for some $1 \leq s \leq r-3$, then $T_{a}=T-\left\{y_{0} r_{j_{s}}^{+}, y_{0} x\right\}+\left\{x r_{j_{s}}^{+}, z_{j} x_{j_{s}}\right\}$ is a spanning tree with $L\left(T_{a}\right)=L(T)-\left\{x_{j_{s}}\right\}$, contrary to (C1); if $x y_{0}^{-} \in E(G)$, then $T_{b}=T-\left\{y_{0}^{-} y_{0}, y_{0} x\right\}+\left\{x_{0} y_{0}, x y_{0}^{-}\right\}$is a spanning tree with $L\left(T_{b}\right)=$ $L(T)-\left\{x_{0}\right\}$, contrary to (C1).

By Claim 3.19, we have $\operatorname{deg}_{T}\left(y_{0}\right)=r-2$. Let T_{f} be a connected component $T-z_{j}^{+}$such that $z_{j} \in V\left(T_{f}\right)$. Then by Claim 3.17, $B(T)-\left\{y_{0}\right\}=B\left(T_{f}\right)$. Denote $B^{*}=B\left(T_{f}\right)-\left\{z_{j}\right\}$. Then $T^{*}=T-\left\{y_{0} r_{j_{1}}^{+}, \ldots, y_{0} r_{j_{r-3}}^{+}, z_{j} z_{j}^{+}\right\}+\left\{x_{j_{1}} z_{j}, \ldots, x_{j_{r-3}} z_{j}, x_{0} y_{0}\right\}$ is a spanning tree with $\left|L\left(T^{*}\right)\right|=|L(T)|$. Assume that $d_{T}\left(x_{0}, z_{j}\right)=a$ and $d_{T}\left(z_{j}^{+}, y_{0}\right)=b$. Note that $\operatorname{deg}_{T^{*}}(z)=\operatorname{deg}_{T}(z)$, $d_{T^{*}}\left(z_{j}^{+}, z\right)=d_{T}\left(x_{0}, z\right)+b+1$ for any $z \in B^{*}$ and $\operatorname{deg}_{T^{*}}\left(y_{0}\right)=2, \operatorname{deg}_{T}\left(y_{0}\right)=r-2, d_{T^{*}}\left(z_{j}^{+}, y_{0}\right)=b, d_{T}\left(x_{0}, y_{0}\right)=a+b+1$ and $\operatorname{deg}_{T^{*}}\left(z_{j}\right)=\operatorname{deg}_{T}\left(z_{j}\right)+r-4, d_{T^{*}}\left(z_{j}^{+}, z_{j}\right)=a+b+1$. Hence,

$$
\begin{aligned}
& f\left(T^{*}, z_{j}^{+}\right)-f\left(T, x_{0}\right)=\sum_{z \in I\left(T^{*}\right)}\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(z_{j}^{+}, z\right)-\sum_{z \in I(T)}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right) \\
& =\left\{\sum_{z \in B^{*}}\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(z_{j}^{+}, z\right)+\sum_{z \in\left\{z_{j}, y_{0}\right\}}\left(\operatorname{deg}_{T^{*}}(z)-2\right) d_{T^{*}}\left(z_{j}^{+}, z\right)\right\} \\
& -\left\{\sum_{z \in B^{*}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right)+\sum_{z \in\left\{z_{j}, y_{0}\right\}}\left(\operatorname{deg}_{T}(z)-2\right) d_{T}\left(x_{0}, z\right)\right\} \\
& =\sum_{z \in B^{*}}\left(\operatorname{deg}_{T}(z)-2\right)(b+1)+\left(\operatorname{deg}_{T}\left(z_{j}\right)+r-4-2\right)(a+b+1) \\
& -\left\{(r-2-2)(a+b+1)+\left(\operatorname{deg}_{T}\left(z_{j}\right)-2\right) a\right\} \\
& =\sum_{z \in B^{*}}\left(\operatorname{deg}_{T}(z)-2\right)(b+1)+\left(\operatorname{deg}_{T}\left(z_{j}\right)-2\right)(b+1) \\
& =\sum_{z \in B^{*} \cup\left\{z_{j}\right\}}\left(\operatorname{deg}_{T}(z)-2\right)(b+1)
\end{aligned}
$$

This together with $b+1>0$ and (C2) implies that $\sum_{z \in B^{*} \cup\left\{z_{j}\right\}}\left(\operatorname{deg}_{T}(z)-2\right) \leq 0$. Thus $\operatorname{deg}_{T}(z)=2$ for $z \in B^{*} \cup\left\{z_{j}\right\}$. By Claim 3.17, we have $B(T)=\left\{y_{0}\right\}$. In this subcase, $k=r-3$ and thus, $p=\frac{k}{r-3}=1$, contrary to Claim 3.8.

By Claims 3.15, 3.16 and 3.18 , we have $\alpha(G) \geq\left|U^{*}\right|+1 \geq k+1+\left\lceil\frac{k}{r-3}\right\rceil+1$, contrary to Claim 3.8. This completes the proof of Case 2.

4. Proof of Theorem 1.11

We define $\left(G_{1}, G_{2}, x\right)$ a separation of a connected graph G if G can be decomposed into two nonempty connected subgraphs G_{1} and G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x\}$. We call a path P an x-path if P has an end vertex x. An (x, Y)-path is a path starting at x and ending at a vertex of Y, where the internal vertices are not in $\{x\} \cup Y$. An (x, Y, t)-fan is a set of t internally disjoint (x, Y)-paths with distinct terminal vertices in Y.

Lemma 4.1. Let G be a connected $K_{1,4}$-free graph and $\left(G_{1}, G_{2}, x\right)$ be a separation of G. If G_{i} is a block and $\alpha\left(G_{i}\right) \leq 3$, then G_{i} has a Hamiltonian x-path for $i=1,2$.

Proof. For convenience, we can only take G_{1} into consideration. Assume that G_{1} has no Hamiltonian x-path. Choose an x-path P in G_{1} such that
(C4) P is as long as possible.
Suppose that x and y are the end vertices of P. Obviously, $N_{G_{1}}(y) \subseteq V(P)$ as (C4) and G_{1} has no x-claw as G being $K_{1,4}$-free. We set a direction from x to y in P. Since P is not a hamiltionian x-path and G_{1} is 2 -connected, there exists a ($z, P, 2$)-fan such that $z Q_{1} u_{1}$ and $z Q_{2} u_{2}$ are two disjoint (z, P) paths, where $z \in V\left(G_{1}-P\right)$ and $u_{1}, u_{2} \in V(P)$. Let y_{0} be a neighbour of y in G_{1} such that $d_{P}\left(y, y_{0}\right)=\max _{v \in N_{G_{1}}(y)} d_{P}(y, v)$. Obviously, $y \neq u_{2}$.

By the choice of (C4) and y_{0}, it is easy for us to check the following claim.

Claim 4.2.

(1) $d\left(u_{1}, u_{2}\right) \geq 2$;
(2) $\left\{z, u_{1}{ }^{+}, u_{2}{ }^{+}\right\}$and $\left\{z, u_{1}{ }^{+}, y\right\}$ are two independent sets;
(3) if $u_{1}{ }^{-}$exists, then $\left\{z, u_{1}{ }^{-}, u_{2}{ }^{-}\right\}$is also an independent set;
(4) $u_{1}^{-}, u_{1}^{+}, u_{2}^{-} \notin N_{G_{1}}(y)$.

Next, we will consider two assumptions:
We first assume that $x=u_{1}$. By Claim 4.2, $\left\{x^{+}, z, y\right\}$ is independent. Since G_{1} has no x-claw, we have $x \notin N_{G_{1}}(y)$. Note that $y_{0} \neq x^{+}, u_{2}^{-}$and $\delta(G) \geq 2$.

If $y_{0} \in V\left(x^{++} P u_{2}^{--}\right)$, then $\left\{y_{0}^{+}, z, x^{+}, u_{2}^{+}\right\}$is an independent set. In fact, we set

$$
P^{\prime}= \begin{cases}x P y_{0} y \overleftarrow{P} y_{0}^{+} z & \text { if } z y_{0}^{+} \in E\left(G_{1}\right) \\ x Q_{1} z Q_{2} u_{2} P y y_{0} \overleftarrow{P} x^{+} y_{0}^{+} P u_{2}^{-} & \text {if } x^{+} y_{0}^{+} \in E\left(G_{1}\right) \\ x P y_{0} y \overleftarrow{P} u_{2}^{+} y_{0}^{+} P u_{2} Q_{2} z & \text { if } u_{2}^{+} y_{0}^{+} \in E\left(G_{1}\right)\end{cases}
$$

Then P^{\prime} is an x-path in G_{1} with $\left|V\left(P^{\prime}\right)\right|>|V(P)|$, which contradicts (C4). By Claim 4.2(1), $\left\{z, x^{+}, u_{2}{ }^{+}\right\}$is independent. Hence, $\left\{y_{0}^{+}, z, x^{+}, u_{2}^{+}\right\}$is independent in G_{1}, a contradiction to $\alpha\left(G_{1}\right) \leq 3$.

If $y_{0} \in V\left(u_{2} P y\right)$, then we can utilize the similar discussion to Claim 3.5 in Theorem 1.8 to find $z_{0} \in V\left(y_{0} P y\right)$ such that $z \in N_{G_{1}}(y)$ for all $z \in V\left(y_{0} P z_{0}\right)$ and $y z_{0}{ }^{+} \notin E\left(G_{1}\right)$. Set

$$
P^{\prime \prime}= \begin{cases}x Q_{1} z Q_{2} u_{2} P z_{0} y \overleftarrow{P} z_{0}^{+} x^{+} P u_{2}^{-} & \text {if } x^{+} z_{0}^{+} \in E\left(G_{1}\right) \\ x P z_{0} y \overleftarrow{P} z_{0}^{+} z & \text { if } z z_{0}^{+} \in E\left(G_{1}\right)\end{cases}
$$

Then $P^{\prime \prime}$ is an x-path in G_{1} with $\left|V\left(P^{\prime \prime}\right)\right|>|V(P)|$, which contradicts (C4). Note that $\left\{x^{+}, z, y\right\}$ is independent. Hence, $\left\{x^{+}, z, z_{0}{ }^{+}, y\right\}$ is independent in G_{1}, a contradiction to $\alpha\left(G_{1}\right) \leq 3$.

We now assume that $x \neq u_{1}$. By Claim 4.2(4), $u_{1}{ }^{-}, u_{1}^{+}, u_{2}{ }^{-} \notin N_{G_{1}}(y)$.
If $y_{0} \in V\left(x P u_{1}^{--}\right)$, then $\left\{y_{0}^{+}, z, u_{1}^{+}, u_{2}^{+}\right\}$is an independent set. In fact, if $y_{0}^{+} u_{1}^{+} \in E\left(G_{1}\right)$, then $P^{\prime}=x P y_{0} y \overleftarrow{P} u_{1}{ }^{+} y_{0}^{+} P u_{1} Q_{1} z$ is an x-path in G_{1}, which contradicts (C4). By the similar discussion as above, we have $y_{0}^{+} u_{2}^{+}, y_{0}^{+} z \notin E\left(G_{1}\right)$. Note that $\left\{z, u_{1}{ }^{+}, u_{2}{ }^{+}\right\}$is an independent set by Claim 4.2(1). Hence, $\left\{y_{0}^{+}, z, u_{1}{ }^{+}, u_{2}{ }^{+}\right\}$is an independent set, a contradiction to $\alpha\left(G_{1}\right) \leq 3$.

If $y_{0} \in V\left(u_{1} P u_{2}^{--}\right)$, then we can easily see that $\left\{y_{0}^{+}, z, u_{1}^{-}, u_{2}^{+}\right\}$is an independent set, a contradiction to $\alpha\left(G_{1}\right) \leq 3$; if $y_{0} \in V\left(u_{2} P y\right)$, then it is easy to check that $\left\{y_{0}^{+}, z, u_{1}^{-}, u_{2}^{-}\right\}$is an independent set, a contradiction to $\alpha\left(G_{1}\right) \leq 3$.

Hence, G_{1} has a Hamiltonian x-path. With the similar argument in G_{1}, G_{2} also has a Hamiltonian x-path. Then Lemma 4.1 holds.

Proof of Theorem 1.11.. If G is 2-connected, then the result holds by Corollary 1.10. If G is not 2 -connected, suppose that $\alpha(B) \geq 3$ for every block B in G and G is a minimal counterexample to Theorem 1.11. Let x be a cut vertex in G and $\left(G_{1}, G_{2}, x\right)$ be a separation of G. Obviously, $\alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)-1 \leq \alpha(G) \leq \alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)$ and $\alpha\left(G_{i}\right) \geq 3$.

Case $1 \alpha\left(G_{1}\right)>5$ and $\alpha\left(G_{2}\right)>5$.
Let k_{i} be an integer such that $k_{i}=\left\lfloor\frac{\alpha\left(G_{i}\right)-4}{2}\right\rfloor$ for $i=1,2$. Then $k_{i} \geq 1$.
On one hand, $2 k+5 \geq \alpha(G) \geq \alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)-1 \geq 2\left(k_{1}+k_{2}+1\right)+5$. Hence, $k_{1}+k_{2}+1 \leq k . G_{i}$ satisfies the condition in Theorem 1.11 and the independence number of every block in G_{i} is also no less than 3 . On the other hand, since G
is a minimal counterexample to Theorem 1.11, G_{i} has a spanning tree with at most k_{i} branch vertices. Then $\left|B\left(T_{1} \cup T_{2}\right)\right| \leq$ $\left|B\left(T_{1}\right) \cup B\left(T_{2}\right) \cup\{x\}\right| \leq\left|B\left(T_{1}\right)\right|+\left|B\left(T_{2}\right)\right|+1 \leq k_{1}+k_{2}+1$.

Hence, $T_{1} \cup T_{2}$ is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample.
Case $2 \alpha\left(G_{1}\right)>5$ and $3 \leq \alpha\left(G_{2}\right) \leq 5$.
Let k_{1} be an integer such that $k_{1}=\left\lfloor\frac{\alpha\left(G_{1}\right)-4}{2}\right\rfloor$ and $k_{2}=0$. Then $k_{1} \geq 1$ and $\alpha\left(G_{2}\right) \leq 5=2 k_{2}+5$.
On one hand, $2 k+5 \geq \alpha(G) \geq \alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)-1 \geq 2 k_{1}+4+3-1$. Hence, $k_{1}+1 \leq k . G_{i}$ satisfies the condition in Theorem 1.11 and the independence number of every block in G_{i} is also no less than 3 . On the other hand, since G is a minimal counterexample to Theorem $1.11, G_{i}$ has a spanning tree with at most k_{i} branch vertices. Then $\left|B\left(T_{1} \cup T_{2}\right)\right| \leq$ $\left|B\left(T_{1}\right) \cup B\left(T_{2}\right) \cup\{x\}\right| \leq\left|B\left(T_{1}\right)\right|+\left|B\left(T_{2}\right)\right|+1 \leq k_{1}+k_{2}+1=k_{1}+1$.

Therefore, $T_{1} \cup T_{2}$ is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample.
Case $33 \leq \alpha\left(G_{1}\right) \leq 5$ and $3 \leq \alpha\left(G_{2}\right) \leq 5$.
Let $k_{i}=0$. Then $\alpha\left(G_{i}\right) \leq 5=2 k_{i}+5$.
On one hand, $\alpha(G) \geq \alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)-1 \geq 5 . G_{i}$ satisfies the condition in Theorem 1.11 and the independence number of every block in G_{i} is also no less than 3 . On the other hand, since G is a minimal counterexample to Theorem 1.11, G_{i} has a spanning tree with at most k_{i} branch vertices. Then $\left|B\left(T_{1} \cup T_{2}\right)\right| \leq\left|B\left(T_{1}\right) \cup B\left(T_{2}\right) \cup\{x\}\right| \leq\left|B\left(T_{1}\right)\right|+\left|B\left(T_{2}\right)\right|+1 \leq k_{1}+k_{2}+1=$ 1. In fact, $\alpha(G) \leq 5$. Otherwise, $2 k+5 \geq \alpha(G) \geq 6$. That is, $k \geq 1 \geq\left|B\left(T_{1} \cup T_{2}\right)\right|$. Then $T_{1} \cup T_{2}$ is a spanning tree of G with at most k branch vertices, a contradiction with G being a counterexample.

Therefore, $\alpha(G)=5$ and $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)=3$. By Lemma 4.1, G_{i} has a Hamiltonian x-path P_{i} for $i=1,2$. Then $P_{1} \cup P_{2}$ is a Hamiltonian path in G, a contradiction with G being a counterexample. Hence Theorem 1.11 holds.

Data availability

No data was used for the research described in the article.

Acknowledgments

We are grateful to the anonymous referees for their valuable comments and suggestions of this paper.

References

[1] H. Broersma, H. Tuinstra, Independence trees and hamilton cycles, J. Graph Theory 29 (1998) 227-237.
[2] Y. Chen, G. Chen, Z. Hu, Spanning 3-ended trees in k-connected $k_{1,4}$-free graphs, Sci. China Math. 57 (2014) 1579-1586.
[3] Y. Chen, P.H. Ha, D.D. Hanh, Spanning trees with at most 4 leaves in $k_{1,5}$-free graphs, Discrete Math. 342 (2019) 2342-2349.
[4] V. Chvátal, P. Erdős, A note on Hamiltionian circuits, Discrete Math. 2 (1972) 111-113.
[5] Z. Hu, P. Sun, Spanning 5-ended trees in $k_{1,5}$-free graphs, Bull. Malays. Math. Sci. Soc 43 (2020) 2565-2586.
[6] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito, T. Yamashita, Spanning trees with a bounded number of leaves in a claw-free graph, Ars Combin. 103 (2012) 137-154.
[7] A. Kyaw, Spanning trees with at most k leaves in $k_{1,4}$-free graphs, Discrete Math. 311 (2011) 2135-2142.
[8] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27.
[9] K. Ozeki, T. Yamashita, Spanning trees: a survey, Graphs Combin. 27 (2011) 1-26.
[10] S. Win, On a conjecture of las Vergnas concerning certain spanning trees in graphs, Results Math. 2 (1979) 215-224.

[^0]: * Corresponding author.

 E-mail addresses: gchen@gsu.edu (G. Chen), cheny@wtu.edu.cn (Y. Chen), hu_zhiq@aliyun.com (Z. Hu), shunzhezhang@hubu.edu.cn (S. Zhang).
 ${ }^{1}$ This author's work was partially supported by NSFC (No. 11871239).
 ${ }^{2}$ This author's work was partially supported by NSFC (No. 12201472).
 ${ }^{3}$ This author's work was partially supported by NSFC (No. 11971196).
 ${ }^{4}$ This author's work was partially supported by NSFC (No. 11971158), the Youth Project Funds of Hubei Provincial Department of Education (No. 202010401301002) and the General Project Funds of Hubei Provincial Department of Science and Technology (No. 2021CFB476).

